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1 Introduction

To enable technological services such as �nancial market transactions, mobile telephone calls and

the storage of medical records, data must be recorded stored and analyzed [29]. Because there is

so much data which is generated and stored by corporations every day, not all of it is analyzed.

Corporations, for example are interested in data in order to adapt their products and services to

better meet customer needs, optimize operations and infrastructure and �nd new sources of rev-

enue. Machine Learning (ML) is an area of new and innovative methods to analyze big amounts of

data [29].

ML is particularly well suited to applications in retail, health care, energy, �nance or for web

based businesses, where large amounts of data are available to help make better decisions and

understand customer behavior [12]. Large data sets also allow for predicting more complex rela-

tionships. The availability of large data sets has raised interest in modeling consumer behavior and

predicting demand for products with the goal of expanding revenue streams [1].

1.1 Demand Estimation with Machine Learning

One speci�c area of modeling consumer behavior is demand estimation. Business are interested

in knowing what the demand for their product be change in the future. Demand estimation is

the means to predict how consumers will react to price changes of the product, a change in their

income or other factors [38]. Using empirical data, can the quantity demanded or the market share

of a speci�c product be predicted in the future. Therefore demand prediction helps managers make

better business decisions. The advantage of machine learning to standard economic models is the

ability to estimate demand with large numbers of observations and features, or otherwise the so

called big data [29].

However big data is di�cult to estimate with traditional statistical methods i.e. regression or

logistic regression. The reason is the high dimensionality of big data. For example, scanner panel

data from supermarkets with product and store level �xed e�ects could have many hundreds of

explanatory variables. A standard regression problem, with so many variables, would cause the

parameters to be poorly estimated [1]. The traditional methods (linear and logistic regression)

work well when only the most important variables are used for the prediction. To �nd the most

important variables, variable selection is used. Variable selection using the classic models is done

by the practitioner himself, and is based on deep industry knowledge, which could be very di�cult

to acquire, for example when the practitioner isn’t an industry expert. Sometimes the selection

criteria for variables is too arbitrary and often a subject of discussion, between industry experts.
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For this reason a more abstract mechanism is sought to help with variable selection. Machine

learning techniques o�er this possibility and are often applied to demand estimation [1]. Examples

of these are LASSO, decision tree, random forest and gradient boosting. The advantages of these

methods are that they are easy to use, provide a better goodness of �t, are scalable to large amounts

of data and applicable in open source software such as R and Python [1].

1.2 Goal of Research

This paper describes the empirical application of classical and machine learning methods in the

open source software R [28] for the purpose of predicting demand. Product data, such as prices

and product characteristics for breakfast cereals are simulated. The response variable is of categor-

ical nature and represents the chosen alternative. The applied classical methods are logit and linear

regression, while the applied ML methods are LASSO, a decision tree, random forest and gradient

boosting. The methods were adapted to the data and their performance was measured using confu-

sion tables and accuracy. The application focuses mainly on comparing the prediction accuracy of

classical and ML methods under the variation of the number of features. When the method allows,

estimated coe�cients are compared to the assigned coe�cients. Model interpretability measures

for the tree-based methods such as variable importance are shown. Pre-processing of the simulated

data is done for the �tting of the logit, linear regression and LASSO models.

1.3 Overview

The rest of this paper is organized as follows: Section 2 o�ers a literature review of demand es-

timation with discrete choice models and with machine learning methods. Section 3 o�ers the

theoretical framework. It begins with the microeconomics of predicting demand. Then presents

the utility based demand model, which serves as the theoretical basis for the data simulation. Fur-

ther the maximum likelihood estimation procedure is explained. Lastly the section summarizes the

applied in this paper classical and machine learning methods. Section 4 describes the data simu-

lation and the �tting and tuning of the models. Section 5 presents the results. Section 6 discusses

the results and their validity. Section 8 provides a short outlook of open problems, questions or

ideas about further investigations. Appendix A displays the used code. An executable version of

the code is provided with a data storage device.
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2 Literature Review

2.1 Demand Estimation with Discrete Choice Models

Nevo (2000) [24] explains the early hurtles to demand estimation that give insight into the devel-

opment of the discrete choice model literature. The �rst attempts of estimating demand involved

specifying a system of demand equations for each product. The demand of that product was a

function of its own price, the price of other products and other variables. Because there are many

and di�erentiated products in the market, that resulted in a large number of parameters to be es-

timated. Further, idiosyncratic consumer tastes important for the estimation are not observed and

therefore not included in the model. To solve this issue it was simply assumed that an average

consumer exists, which made the model extremely restrictive. The logit demand model from Mc-

Fadden (1974) [22] solved the dimentionality problem and was easy to estimate, however made

strong assumptions such as the irrelevant alternatives property, that caused relative probabilities

of existing alternatives to be unchanged by the introduction of new ones [9]. Extensions such as

the nested logit model, allowed for more �exibility by allowing for preference correlation only in-

side the nests [9]. The most �exible model in terms of preference correlation was the BLP model

developed by Berry Levinson and Pakes (1995) [2]. In this model the substitution among products

is a function of the consumer characteristics instead of nesting speci�cation [9].

A good summary of the BLP model is provided by Train [36]. The model focuses on the estima-

tion of consumer demand based on market level data. Individual-level demand is aggregated over

consumers to obtain market-level demand functions. Market equilibrium prices are determined

from the interaction between demand and supply functions, therefore both need to be modeled.

The observed demand is made up of continuous variables (market shares) rather than discrete

variables. Because demand is aggregated on a market level, prices are endogenously determined

by the interaction of demand and supply. In contrast prices on an individual level are not a�ected

by an individual consumers choice. To account for the endogeneity of prices in this aggregated

model, instruments are necessary. But because the data is aggregated, unobserved factors enter

the demand function non-linearly, which complicates the use of instrumental variables. According

to Train the contribution of Berry Levinson and Pakes is the transformation of the market share

data to allow for the unobserved factors to enter the demand function linearly (p. 9).

Nevo (2001) [25] applied the BLP model to breakfast cereals. The dependent variable was given

by observed market share of the product and explanatory variables were given by product char-

acteristics such as price, sugar content and mushiness. Nevo considered also demographic char-

acteristics of the cereal buyers, such as income, age and if a child is present in the family. Finally

3



Nevo also applied a set of instruments to account for the endogeneity of prices, which results due

to aggregation. The motivation for using breakfast cereals for the application in this paper comes

from Nevo, however in the case of this paper, a basic logit model instead of a BLP model is used.

2.2 Demand Estimation with Machine Learning

This subsection describes relevant to the topic of demand estimation literature, in which classical

and machine learning (ML) methods were compared. The subsection will conclude with specifying,

which of the presented literature papers this paper is most similar to.

Bajari et al. (2015) [1] compared six machine learning methods to two classical methods. The

motivation was to help econometricians �nd practical tools to estimate demand with large numbers

of observations and covariates. The authors used a scanner panel on salty snacks from one grocery

store chain for six years. They allowed for product and store level �xed e�ects, which e�ectively

multiplied the number of explanatory variables, and made standard regression unusable. They

found that the six machine learning models predicted demand out-of-sample much more accurately

than a panel data or a logistic model. A further step they took was the combination of the prediction

methods into an ensemble model and so increasing the prediction accuracy further.

Paredes et al. (2017) [27] investigated how machine learning methods can outperform discrete

choice models for prediction of car ownership. The authors used transportation household survey

data from Singapore. They �nd that when using discrete choice features, the machine learning

methods are inferior to a logit model. However after engineering these features to be more appro-

priate for machine learning, they are superior. According to the authors the �ndings highlighted

both the costs of applying machine learning models in economic contexts and the opportunities

for improved prediction.

Chernozhukov et al. (2018) [4] mention the interest of econometricians to use machine learning

methods originally designed for prediction to help with the model selection process, while retain-

ing desirable inference properties for causal parameters. Because estimation of counter-factual

outcomes is a key aspect of causal analysis, but often there is an absence of explicit exogenous

variation, economists must do the model selection themselves, which is subjective and labor in-

tensive. Hence the authors reiterate the use of machine learning (ML) methods to automate the

model selection process. This is a case where machine learning methods could be applied beyond

just prediction.

In addition to discussing the bene�ts for economists of applying ML methods, Green and Richards

(2016) [12] compare several ML methods to standard models of demand estimation, using a scanner

panel data on cold cereals for a set of grocery stores. The ML methods they use to reduce dimen-
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sionality are stepwise regression, stagewise regression, LASSO, support vector machines, bagging

and random forests. The authors apply an approach to simulate coe�cients in order to interpret

the results of the ML methods, but because these methods don’t have standard normal asymptotics,

they leave the interpretations open to criticism. They show that ML methods can predict better

than standard econometric methods.

Varian (2014) [37] compares ML methods to standard econometric methods and shows that de-

pending on the underlying relationship in the data, ML or standard methods could perform better.

For example when the underlying relationship is linear, a normal regression performs better, but

when the underlying relationship is non-linear, a regression tree performs better. He gives also

examples such as the Titanic data, where a tree model doesn’t necessarily perform better, but helps

reveal aspects of the data that are not apparent from the traditional linear approach. Similar to the

Chernozhukov paper, Varian uses ML methods beyond their original purpose for prediction.

2.3 Justi�cation of Research

The application described in this paper resembles the work of Paredes et al. [27] the most, due to the

presence of a categorical response variable and hence the same performance measures: confusion

matrix and accuracy. Paredes et al. predict if a car is sold or not, while this paper determines if

a breakfast cereal is chosen. Paredes et al. perform feature engineering to adopt features to the

prediction methods. Similarly this paper transforms the original data for the purpose of �tting the

logit, linear regression and LASSO models. The second most simular paper is the one from Bajari et

al. [1]. In contrast to this paper, Bajari et al. work with quantity sold of salty snacks, a categorical

variable, which enables them to observe mean squared error (MSE) as performance measure. Both

Bajari et al. and Paredes et al. use real world data, while data in this paper is simulated with

the purpose of assigning true coe�cients and measuring deviations to estimated coe�cients. A

second reason for simulating the data is that splitting of a real world data set into training and

testing samples could without the application of any advanced sampling methods risk making the

samples imbalanced.
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3 Theoretical Framework

3.1 Microeconomics of Demand

This subsection will look into the economics theory and motivate the estimation demand equations.

It draws from the textbook Managerial Economics by Hill (1989) [15] (p. 100-125). Related examples

to breakfast cereals are made, since these products are the focus of the empirical work in this paper.

Production and Pricing Decisions

According to Hill, the success of a business organization depends on it producing goods and ser-

vices that consumers want. For example in the breakfast cereal market there are goods with dif-

ferent characteristics. Some consumers prefer their cereal crisp, others like it sweet, while others

prefer their cereal be made up of whole grains and have less added sugar. O�ering multiple di�er-

ent products to satisfy diverse consumer preferences will further the pro�tability of a �rm, because

it is catering to a large group of consumers (p. 100).

Goods and services can be sold successfully when a �rm o�ers them at a price consumers are

prepared to pay. For example, if a �rm o�ers a breakfast cereal for a price higher than most parents

are ready to pay, the cereal will not sell well even if it hast the right combination of sweetness,

crispiness or enticing packaging. Or if that same cereal is sold for a very cheap price, then many

consumers will buy the product, however the �rm may not pro�t from the extra sales. In this case

the �rm failed to determine what the highest price is that the consumer is ready to pay for the

cereal and forwent measurable pro�ts (p. 100). Therefore it is important for a �rm to sell its goods

or services at the price consumers are prepared to pay.

A Firms Demand Condition

To �nd the price consumers are prepared to pay, knowing the �rms demand condition is essential.

Price and product attributes have in�uences on the demand of a product. The principal tool to

analysing demand is the demand function

Da = f(X1...Xn),

where Da is the demand for a good a, f is a general (unspeci�ed) function, and X1...Xn are

the variables that in�uence demand (p. 101). To determine the demand for product a, the next

step would be to identify the particular variables that in�uence demand. These may be as above

mentioned price, quality, popularity, sweetness, packaging etc. After identifying the variables, the

next step is to transform the general function f into a speci�c one.
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In this project f will take the form of a logit probability, then a linear function in the case of

regression and LASSO, but also a not-linear function in the case of the tree-based methods. When

the function is speci�ed, it will be then determined to what extent a variable a�ects demand. For

example, in the marketing world of cereals, the sweetness of a cereal and the enticement of its

packaging play an important role. As seen in any grocery store, cereals have their own shapes,

colors and even mascots, which serve to di�erentiate them from the competition.

Variables that in�uence Demand

To what extent an enticing packaging has on the demand of a cereal will be determined by the

estimated coe�cient (β) for that variable. Given the demand function, the in�uence of a particular

variable can be measured by the partial derivative

dD

dXi
,

where dD is the change in demand for a speci�c product and dXi is the change in a speci�c product

attribute. A change in a product attribute in the denominator will cause a corresponding change

of the demand in the numerator (p. 101). If the partial derivative is positive, an increase of Xi

will cause a increase in demand and if negative, a decrease in demand. If for example the product

attribute is price, which tends to be the most important product characteristic for the average

consumer, plotting the relationship between quantity demanded and price, yields the graphic in

Figure 1.

Price

Quantity
0

Demand

Figure 1: Demand Curve

Figure 1 shows an inverse relationship between quantity demanded and price. This means that

the estimated coe�cient of price will always be negative and should be modeled as such when

simulating data. Other variables such as quality or popularity of the product also a�ect its demand.
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In this project, the demand for cereals, given di�erent simulated characteristics, will be analyzed.

The type of product, also has an in�uence on its demand. Cereals are consumer and non-durable

goods, which means their purchase is repetitive. For cereals the brand is probably their most im-

portant aspect next to price. People may buy the same type of cereal over and over because they

become loyal to the brand. According to Foeller [9], this e�ect has an in�uence on the elasticity of

a product and can cause consumers to stick with products despite alternatives being available at a

lower price.

Elasticity is the marginal e�ect on demand of a unit change in one variable and it is measured

by the partial derivative as mentioned above. The most common example is the price elasticity

of demand, which measures the responsiveness of demand to a change in price. According to Hill

there is a unique relationship between price elasticity and the e�ect of price changes upon the total

revenue. This relationship is summarized in Table 1.

Table 1: Price Elasticity and Total Revenue

Price

Decrease Increase
Elastic Total revenue Total revenue

increases decreases

Demand is

price

Inelastic Total revenue Total revenue

decreases increases

adapted from Hill [15] (p. 111)

Table 1 shows that raising the price will only be pro�table under certain conditions, for example

when the good is inelastic. When a certain product has not many substitutes, such as gasoline, and

consumers depend on it for their transportation, then its price is inelastic. Even if prices of gasoline

rise, people will still need to buy it. Similarly when a customer is loyal to a cereal brand, they are

likely to buy it even if the price has increased. Price changes are not simulated in the empirical

application in this paper, therefore elasticities are not analyzed, however they are an important

part of demand estimation in the real world.

The Identi�cation Problem

Often when predicting demand it is di�cult to di�erentiate the demand from the supply curve.

Sales of a product, rather than demand are observed at di�erent prices. Economic theory states that

sales & prices are determined by the interaction of supply & demand. According to Hill, because

of this interaction, it is di�cult to determine if the estimated equation is the demand or the supply

8



curve, or more likely a combination of both, such as in Figure 2.

Price

Sales0

S1

S2

S3

D1

D2

D3

B

1

1

1

Figure 2: Mongrel Curve

adapted from Hill [15] (p. 125)

This project will only focus on the estimation of demand curves that tend to have price and

product characteristics as variables. In this case, the demand equation looks like

Demand = β1 ∗ price+ β2 ∗ characteristic.

Supply will not be taken into account, which tends to have variables such as price and cost of raw

materials and looks like

Supply = β1 ∗ price+ β2 ∗ raw material costs.

According to Nevo (2002) [24], interaction between supply and demand leads to an endogeneity

problem in the estimation of coe�cients. Demand, which is a response variable on the left side of

the equation tends to be in�uenced by the same factors, which in�uence price, a variable on the

right side of the equation.

Having covered the most important aspects of the microeconomics of predicting demand, the

next sub-sections are as follows: �rst the demand model, which determines the data generating

process is presented, then the logit model and its estimation are described. Lastly, the theoretical

foundation of the remaining classical and machine learning methods is summarized.
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3.2 Demand Model

This section sourced from Train (2002) [36] (p. 1-59), describes the utility based demand model

originally proposed by McFadden (1974) [22]. It begins with the basics of a discrete choice model

and the utility framework behind it. Then, the section elaborates on the logit model and its limita-

tions. Finally it describes the maximum likelihood estimation procedure for the coe�cients. When

relevant, references are made to the data simulation, which is described in its entirety in Section 4.

According to Train, in order to derive a model which would be appropriate for the analysis

of demand, one has to begin at the individual choice level . A customer faces a buying decision

among a set of competing alternatives. The outcome of a decision is denoted as y. The outcome

variable is discrete. The goal is to understand the behavioral process which leads to the choice of

the consumer. It is reasonable to assume that the buying decision in a market is of a discrete nature.

The consumer will choose to buy one product or no product. In the case that the consumer buys

two products, the discrete choice assumption still holds, because only one product at a time can be

consumed (p. 3).

In order to �t a discrete choice model, the choice probabilities need to have certain character-

istics. They have to be mutually exclusive, exhaustive and �nite. Mutually exclusive means that

choosing one alternative implies not choosing another. Exhaustive means that all possible alterna-

tives are included in the choice set. An option for choosing none of them could also included. Finite

means that the number of possible outcomes is not in�nite. These features di�erentiate discrete

choice models from continuous models (p. 16).

Decision analysis is classically done through utility, which means that a person obtains a net

bene�t from choosing a product. It is assumed that the decision maker maximizes utility. The

factors, which contribute to utility are the observed x and unobserved ε. They �ow into utility in

the following manner:

Unj = β ∗ xnj + εnj ; ∀j, (3.1)

whereU is the net utility and β is a coe�cient of how observed factors x contribute toU . The index

n is for a decision-maker that faces a choice between j alternatives. The di�erent alternatives, j,

are labeled with the following sequence: j = (1, ..., J). The ε term captures the factors that are

included in U , but are not part of the model. The decision maker will choose the alternative that

provides the highest utility. For example, when Uni > Unl the choice is alternative i (p. 19).

The researcher observes the attributes of the product xnj . They are labeled with a subscript n,

because the attributes depend on the perception of the decision maker. Representative utility is
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only made up of the observable factors x as

Vnj = β′ ∗ xnj . (3.2)

Therefore representative utility is the deterministic part of the equation and belongs to the total

utility equation in the following manner

Unj = Vnj + εnj ,

where the attributes which the researcher does not observe are labeled εnj . The unobserved at-

tributes are product and consumer speci�c attributes, which the researcher can’t capture. Therefore

he treats them as random. For the sake of estimation, one has to transform Vnj which can take any

real value so that it can be interpreted as a probability (p. 20).

According to Train, because the decision maker chooses one alternative, indexed i from all avail-

able alternatives indexed j, the choice could be expressed as

Prob(Uni > Unj ∀j 6= i).

Now substituting for the utility formula results in

Prob(Vni + εni > Vnj + εnj ∀j 6= i),

and rearranging the terms gives us

Prob(εni − εnj < Vni − Vnj ∀j 6= i).

Since the values of ε are unknown, a probability could be calculated. This probability is equal to

the integral over all possible values of the unobserved factors or

∫
ε

I(εnj − εni < Vni − Vnj ∀j 6= i)f(εn)d(εn).

Since ε is a random vector εn = (εn1, ..., εnJ) with a joint density f(εn), the choice cannot be

predicted exactly. Instead taking the integral over the density of the unobserved portion of utility

f(εn), would calculate the probability of a particular outcome (p. 20).
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The Logit Model

In order to evaluate the integral, one has to make assumptions about the distribution of the error

term ε. The logit model, is derived by assuming the distribution of the unobserved portion of utility,

f(ε), is independently identically extreme value distributed (p. 42). The unobserved factors ε are

assumed to be uncorrelated over alternatives and to have the same variance over all alternatives.

Then ε has density

f(ε)nj = e−εnje−e
−εnj

(3.3)

and a cumulative distribution

F (ε)nj = e−e
−εnj

.

Because the ε’s are independent, the cumulative distribution is the product of the individual cumu-

lative distributions (p. 44),

Pni | εni =
∏
j 6=i

e−e
(εni+Vni−Vnj)

.

Because εni is not given, the probability of that choice is the integral over all values of εni weighted

by its density (3.3):

Pni =
∫

(
∏
j 6=i

e−e
(−εni+Vni−Vnj)

)e−εnie−e
−εni

dεni.

After manipulating the integral, the closed-form expression results in

Pni = eVni∑
j e
Vnj

, (3.4)

which is the logit choice probability. Expressed in terms of the linear parameters, the equation

becomes

Pni = eβ
′Xni∑

j e
β′Xnj

.

Properties of Logit Choice Probabilities

The resulting logit-probabilities have the following properties. First, the probability P is between

0 and 1. When the representative utility of alternative i rises, re�ecting an improvement in its ob-

served attributesXni, the exponential in the numerator of (3.4) will increase. While representative

utilities of other alternatives, in the denominator, remain constant, Pni increases and approaches
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one. Same goes for a decrease in Vni, which will decrease the exponential in the numerator and

the probability Pni will approach zero (p. 45).

Second, choice probabilities for all alternatives j have to sum to one. This means that the

decision-maker has to choose one alternative. The denominator of (3.4) is the sum of the rep-

resentative utilities over all alternatives (p. 45). During the data simulation, described in Section 4,

the obtained logit probabilities are proofed if their probabilities sum to 1.

The third property of a logit choice probability is that it is related to the representative utility

in an S-shaped fashion, such as shown in Figure 3. In the �gure Pni is the probability of choosing

alternative i by decision maker n with a representative utility V .

Pni

Vni00

1

Figure 3: Binomial probability plot

from simulating two choice alternatives

adapted from Train (p. 46)

The S-shape describes the impact of changes in explanatory variables onto the probability of choos-

ing the alternative. For example, if the representative utility of an alternative is very low (triangle-

point in Figure 3) compared to that of another (square-point), a small increase in the utility of that

alternative has little impact on the probability of it being chosen. If an alternative has already a

moderate representative utility (square-point), only a small increase in one of its attributes would

increase the probability more than a larger utility increase by the triangle-point. Train makes the

example that a large improvement in the bus service of an area, where the service is already poor,

that a few travelers take the bus, has a much smaller impact on total bus travel, compared to a small

improvement of bus service in an area where bus service is widely spread (p. 45).

Limitations of Logit

Logit has certain limitations which have to be considered when applying it. The �rst one is that

β’s or tastes can not vary with unobserved variables or randomly. Tastes have to vary systemati-

cally in order to be incorporated in logit. If tastes were to vary based on unobserved variables or
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purely randomly, they become part of the error term, which will no longer be independently and

identically distributed (p. 50).

The second limitation of logit is the proportional substitution pattern derived from the indepen-

dence of irrelevant alternatives (IIA) property. This property implies that an improvement in one

alternative draws proportionately from other alternatives. If for example the probability of one

alternative rises by ten percent, then the probabilities of all other alternatives muss fall by ten per-

cent. Therefore the ratio of probabilities of two alternatives have stay constant, when an attribute

of a third alternative changes (p. 54),

Pni
Pnl

= eVni

eVnl
.

Train mentions that proportionate substitution can be realistic for some situations, but in many

cases more �exible patterns of substitution are to be expected.

To explain proportionate substitution, Train makes the famous blue bus, red bus example: A

traveler can choose between taking a blue bus or a car to work. Assumed that the choice probabil-

ities between the two alternatives are the same 1/2, their ratio is 1. A new alternative, a red bus,

that is exactly the same as the blue bus is introduced. According to the logit model, the new proba-

bilities would be 1/3 for each of the three alternatives. In real life it is expected that the probability

of taking the car remains by 1/2 and the probability of each of the two buses drops to 1/4, since

the traveler is indi�erent between the two buses. The ratio of probabilities between two alterna-

tives should actually change with the introduction of a third instead of staying constant. Therefore

the logit model overestimates the probability of taking either of the buses and underestimates the

probability of taking the car to work (p. 54).

According to Croissant [6], if the IIA property is violated, because of an unobserved variable,

such as the inability of the model to recognize that the blue and red bus are the same, the error term

will no longer be independent. Relaxing the IIA assumption leads to an extension of the logit model

called the mixed logit model. It maintains the Gumbel distribution and the errors are allowed to be

correlated and heteroskedastic, meaning they don’t all have the same variance.

Data for this paper was simulated so that the representative utilities of the three products are

roughly the same such that their choice probabilities are similar, making it appropriate for a basic

logit model. Since the focus of this paper is the comparison of a discrete choice model to machine

learning methods, a mixed logit model remains a point of further study. The next section will cover

the estimation procedure of the logit model.
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3.3 Estimation

This section draws further from Train’s book (2002) [36] (p. 70-78) on discrete choice methods.

According to Train, the most basic type of estimation happens when the sample is random,

all alternatives are used and the explanatory variables are exogenous, meaning that the variables

entering representative utility are independent of the unobserved components. A sample of N de-

cision makers is obtained. The logit probabilities Pni are then calculated, given the parameters and

the explanatory variables. The probability that one individual n made the choice he was actually

observed to make is

∏
i

(Pni)yni ,

where yni is a dummy variable which is equal to 1 if individual n made choice i and otherwise

0. Assuming each decision maker’s choice is independent of that of other decision makers, the

probability of each person in the sample choosing the alternative that he was observed to chose is

simply the product of the probabilities associated with every observation

L(β) =
N∏
n=1

∏
i

(Pni)yni ,

where β are the parameters of the model. Taking the log of both sides, leads to the log-likeyhood

function

LL(β) =
N∑
n=1

∑
i

yniln(Pni) (3.5)

and the coe�cient β is the value that maximizes the function (p. 70).

Interpretation of the Log-likelihood Function

Rearranging Equation (3.5) shows how the process of estimation works. At the maximum of the

likelihood function, its derivative with respect to each of the parameters is zero

dLL(β)
dβ

= 0.

When representative utility (3.2) is linear in parameters, using the log-likelihood function and the

formula for the logit probabilities, Train shows that the �rst order condition becomes

∑
n

∑
i

(yni − Pni)xni = 0. (3.6)
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Then rearranging both sides and dividing by N results in

1
N

∑
n

∑
i

ynixni = 1
N

∑
n

∑
i

Pnixni. (3.7)

The left hand side of (3.7) is the observed average of x in the sample and the right hand side the

predicted average. These two averages equal each other at the maximum likelihood estimates, β.

That is: the maximum likelihood estimates β are those that make the predicted average of each

explanatory variable equal to the observed average in the sample (p. 71-72).

Equation (3.6) shows that the di�erence between a person’s actual choice, yni and the probability

of that choice, Pni is the modeling error. Further, the left hand side of Equation (3.6) is the sample-

covariance of the residuals with the explanatory variable. The maximum likelihood estimates are

therefore the values of β that make the covariance zero, that is, make the residuals uncorrelated

with the explanatory variables. This condition for obtaining unbiased estimates is the same as the

one that applies to linear regression.

Closed-Form Solution

The estimation procedure discussed in this section has an explicit solution. This means that the log-

likelihood function is globally concave and there is a unique optimum that is the global maximum.

An explicit solution is present when the parameters enter utility linearly. Then the estimation can

be aided using common statistical packages (p. 4). In this paper the utility formula is designed so

that the parameters enter the equation in a linear manner, therefore no numerical approximation

is necessary for the estimation of the coe�cients.

This section concludes the presentation of the logit model and its estimation. The next section

will present the theory behind the remaining statistical methods used for the prediction.
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3.4 Summary of Applied Methods

This section presents the theoretical basis for the remaining methods applied in the prediction. The

sourced theory for this section comes from the lecture notes of Spindler (2018) [30] and the books

from James et al. (2013) [17] and Hastie et al. (2008) [14].

Figure 4 presents a diagram of all the applied models. When referring in this paper to classical

methods, Logit and Linear Regression are meant. When referring to machine learning methods,

LASSO, Decision Tree, Random Forest and Boosting are intended. Linear Regression and LASSO

are both linear methods, however the former is a classical method, while the latter a machine

learning method.

Applied Methods

Classical

Methods

Discrete

Logit

Continuous

Linear

Regression

Machine

Learning

Linear

LASSO

Non-Linear

Tree-Based

Decision

Tree

Random

Forest

Gradient

Boosting

Figure 4: Applied Models

The simulated data for the prediction requires a classi�cation, therefore it is important to keep in

mind which of the presented methods is suitable and if eventually data needs to be pre-processed

to enable �tting. Throughout this section and paper the assumed data generating process is that

the parameters enter utility linearly according to the utility model (3.1).

Linear Regression

Adapted from Train [36] (p. 72), for a regression model yn = β′xn + εn, the ordinary least squares

estimates are the values of β that set

∑
n(yn − β′xn)xn = 0. However instead of maximizing

the likelihood function, such as in the case of logit, the estimates, β, minimize the sum of the

squared residuals between the observed and predicted values, S = min
∑n
i=1 r

2
i . This is achieved

by solving for β: β = (
∑
n xnx

′
n)−1(

∑
n xnyn), which is the formula for the ordinary leas squares

estimator. Since yn−β′xn is the residual in the regression model, the estimates make the residuals

uncorrelated with the explanatory variable.
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Considering the applicability of linear regression to a three-level classi�cation problem, Hastie

et al. [14], explain why this method fails for classi�cation of more than two alternatives, namely

the approximated probability can be under 0 or greater than 1. Therefore classes can be masked

such as in Figure 5. That means that the class made of triangle-points in the �gure is not separated

from the other two classes.

X1

X
2

Figure 5: Linear Regression for Classi�cation

source: Hastie et al. [14](p.105)

Further, according to James et al. [17], there is no natural way to convert a qualitative response

variable with more than two levels into a continuous response variable.

A technique that allows using regression to go beyond binary classi�cation is the one-vs.rest

approach explained by Mueller [23] (p. 65). It essentially splits the triple-classi�cation problem

into multiple binary classi�cation problems. Through this approach a regression is learned for

each class, yielding an indicator variable 1, when the class in question is chosen or 0 when it is not.

For each class is a separate regression �tted. Each �t yields its own vector of coe�cients β. When

making a prediction, all the regressions are run on a test point and the class of the regression that

has the highest output is the predicted class. This approach was applied for both linear and LASSO

regressions as they were �tted.

Estimating linear regressions when p is close to n. According to Spindler [30], a potential

problem of applying linear regression is the inaccurate estimation of coe�cients when the features-

vector p is large and close to the size of observations n. The estimation of linear regression depends

on the product-characteristics as such:
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p∑
j=1

= βjXj = β′X, for β = (β1, ..., βp)′.

Because there are multiple product characteristicsX , to estimate each parameter β, many observa-

tions per parameter are needed. In the estimation of Bajari et al. [1], where �xed product and store

e�ects were considered, this added many variables to the right hand side. According to Spindler

[30], when the regressors p are much more than the observations n, can linear regression no longer

estimate the parameters well. The goal of the empirical application in this paper is to show exactly

that by increasing the number of features and comparing prediction performance. Because data has

been simulated the real β’s are known and deviation from the true betas can easily be determined.

LASSO Regression

As stated above, if there are many right hand variables p and not enough observations n, then

the coe�cients will be poorly estimated by linear regression. However if only a small amount of

regressors capture most of the variation, what is known as sparsity, then a penalized form of linear

regression,

min
β∈IR

∑
i

(Yi − β′Xi)2 + λ ∗
p∑
j=1
|βj |, (3.8)

can be applied [30] (p. 24). Equation (3.8) is made up of the least squares algorithm plus a penalty

term, with β̂ as the solution to it. The added term penalizes the size of coe�cients by their absolute

values times the penalty level λ. A theoretically justi�ed penalty level is given by

λ =
√
Eε22

√
2nlog(pn).

The penalty level ensures that the lasso predictor β̂′ ∗ X does not over�t the data and delivers

good predictive performance under approximate sparsity. The penalization term also helps with

variable selection, by choosing the variables with high coe�cients. According to Spindler [30] (p.

33), having approximate sparsity, makes it possible to perform estimation with high-dimensional

data. Therefore to test this quality of LASSO, sparsity was built into the simulated data.

Decision Tree

According to Bajari et al. [1] tree-based methods partition the characteristic space into a series of

regions, and �t a value to each partition also known as a node. The tree uses an algorithm that

determines the best variables, according to which it divides the characteristics space. For example,
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the decision tree �tted by James et. al. [17] (p. 304-305) shows that two variables have a particular

in�uence on determining the salary of a baseball player. That is the number of Hits the player made

last year and the number of Years the player is in the league. This partitioning is pictured in Figure

6.

Figure 6: Partitioning of the Characteristic Space with a Tree

source: James et al. [17] (p.305)

Such a partitioning could help predict the future salary of a player. One simply needs to determine

in which quadrant of the space the player falls.

Classi�cation Tree for Prediction. Mathematically expressed, the procedure of �tting a tree

starts with dividing the predictor spaceX1, X2, ..., Xp into J distinct and non-overlapping regions,

R1, R2, ..., Rj . This is called recursive binary splitting. For a regression tree the predicted response

for an observation is given by the mean response of the training observations that belong to that

region [17] (p. 307). In this paper a categorical response variable is used, therefore the prediction

procedure needs to be adapted for classi�cation. For classi�cation, each to be predicted observation

gets assigned the most commonly occurring class of training observations in the region to which

it belongs (p. 312).

Similarly to growing a regression tree, recursive binary splitting is used for a classi�cation tree

[17] (p. 307). Unlike the regression tree, where selecting a predictor and a cut o� point that mini-

mize the mean squared error, classi�cation minimizes the total variance across all classes. Therefore

it divides the characteristics space so that each class is separated from other classes. One measure

of this is the so called classi�cation error. Classi�cation error is the fraction of the training obser-

vations that do not belong to the most common class in a speci�c region and is expressed by

20



E = 1−max
k

(p̂mk).

where p̂mk represents the proportion of training observations in the mth region that are from the

kth class [17] (p. 312). This value is maximized and subtracted from 1, it yields the impurity or the

proportion of training observations in the mth region that do not belong to the kth class.

The Gini Index is another measure of node impurity. It is de�ned as the total variance across the

K lasses. Mathematically

G =
K∑
k=1

p̂mk(1− p̂mk),

where G takes on small values if all the p̂mk’s are close to 1 or 0. A small value indicates that the

node contains predominantly observations of the same class. Cross-entropy is another splitting

rule, which acts similarly to the Gini Index. The rpart package [34] in R uses the Gini index as the

default criterion for splitting.

After applying these splitting rules the tree is grown by dividing the characteristics space more

and more so an upside down tree as in Figure 7 results. The tree splits on those variables, which

contribute the most to the total decrease in node impurities. In case of the baseball players the

algorithm chose a subset of all available variables to split on. One can see their names and criteria

in the �gure. For example the �rst split is based on years<4.5. The left side includes the salary of

players that played less than 4.5 years while the right side of those who played more than 4.5 years,

and so on.
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Figure 7: Baseball Players Tree Split

source: James et al. [17] (p.304)

Underlying Relationship of the Data. According to James et al. [17] (p. 314) in comparison to

a regression model which assumed a linear model of the form

f(X) = f0 +
p∑
j=1

Xjβj + εj ,

regression trees assume a non-linear model of the form

f(X) =
M∑
m=1

β̂m1(X ∈ Rm),

where R1, ...RM are the partitioned spaces [31] (p. 3). Which model is better depends on the un-

derlying relationship between the features and the response. If the underling relationship is linear,

a linear model will perform better in predicting it. If there is a complex non-linear relationship

between the features and the response, a decision tree may outperform a classical linear model. In

the case of this paper the data generating process is linear.
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Random Forest

According to James et al. [17] (p. 316), individual trees have high variances. If for example the

training data is split into two parts and a decision tree is �t on each part, the splits will be di�erent

from one another. When two regressions were �t to these same data parts, they would yield simi-

lar results. A solution to the variance problem by trees is averaging them to reduce their variance

using a sampling method called bootstrap aggregation. The idea is that building multiple prediction

models from multiple training sets and averaging them, will produce a single low-variance model.

But because only one training set is present, it is cleverer to take many samples from it with re-

placement. If the samples are random, some points will be chosen and others won’t, but if done

enough times, the average model will have the lowest variance. This is called bagging, which is

another way of saying averaging and mathematically looks like:

f̂bag(x) = 1
B

B∑
b=1

f̂ b(x),

where B is the number of total regression trees using the same number of bootstrapped training

sets. The trees have low bias, because they are grown deep, but have high variance. For classi�-

cation the predicted class is simply the class which was most commonly chosen by the individual

trees.

By bagging, each time a single tree is �tted, the best feature is chosen to split on. That could be

problematic, because the same feature would be chosen over all the samples. Therefore averaging

wouldn’t reduce the variance of the trees, because they are all correlated. Random forest improves

the splitting procedure by choosing a random subset of features to split on, instead of the full

set of features (James et al., p. 317). Usually this is the square root of the full sample,

√
p. Due to

randomness, trees with di�erent splits will be build, what is called decorelating the trees and makes

the �nal average less variable and more reliable (James et al., p. 321).

Gradient Boosting

According to James et al. (p. 321), boosting is another model combination technique like random

forest, but instead of averaging like the random forest, the technique combines sequentially built

correlated trees. The next tree learns upon the previous. That means that the previous tree should

be of su�cient quality.

The algorithm, adapted from James et al. [17], begins by setting the ensemble model f̂(x) = 0

and the residuals to the actual outcome yi = ri for all i in the training set. Then repeating the

following procedure for all sequentially �tted trees, b = 1, 2, ..., B:
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1. Fit a tree f̂ b with d splits to the training data (X, r).

2. Update f̂ by adding in a shrunken version of the new tree:

f̂(x)← f̂(x) + λf̂ b(x).

3. Update the residuals,

ri ← ri − λf̂ b(xi)

4. Finally output the boosted model,

f̂(x) =
B∑
b=1

λf̂ b(x).

In comparison to bagging, this is a summation of sequentially �tted models, where the current tree

is �t on the residuals ri rather than on the outcome yi. The decision tree is then added to the �tted

function using a small learning rate λ. The residuals are then updated. The �tted trees are not

grown deep, such as in random forest, instead they are kept small using the tuning parameter d,

which signi�es the number of splits per tree. By �tting small trees, the algorithm learns slower.

That is important, because the learning is sequential. To achieve good performance however a

su�cient number of treesB are necessary (James et al., p. 323). The learning rate λ, the number of

trees and number of splits can be chosen using a technique called cross-validation. Cross-Validation

is applied for the tuning of random forest and gradient boosting in Section 4.

Model Tuning Using Cross-Validation

Cross-validation is used for the tuning of the parameters of random forest and gradient boosting

later. This is done automatically using a designated R-package, therefore it is important to cover

this concept, because the package leaves the impression of a black box.

Cross-validation is repeatedly drawing samples from a training set and re�tting the model on

each sample in order to remove variability due to randomness in the data [17]. Therefore it is useful

to �t a model more than one time on di�erent samples of the training set. Further is cross-validation

used to tune machine learning methods by trying di�erent tuning parameters and choosing the best

combination.

The train function part of the caret package [18] helps automatically evaluate the e�ect of dif-

ferent tuning parameters on performance, using resampling, and chooses the best model [19]. To

be tuned features include number of trees, complexity of the tree and learning rate among others.

For random forest and gradient boosting; the train function creates a grid of tuning parameters.
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Many models are trained on di�erent combinations of the tuning parameters and sub-samples of

the training set. The performance of the hold out samples is calculated across each fold. The best

combination of parameters is chosen and the entire training set is used to �t the �nal model.

Accuracy as a Performance Measure

The performance of predictions in this paper will be assessed using accuracy, which according

to Gatto [20] is the standard performance measure for classi�cation exercises. Accuracy is the

number of correct predictions over the total number of predictions. In the two-alternative case it

is expressed by

Accuracy = TP + TN

TP + TN + FP + FN
, (3.9)

where the TP is the number of true positives, TN the number of true negatives, FP the number

of false positives and FN the number of false negatives. These numbers can be expressed in a

four by four confusion matrix. However the classi�cation exercise in this paper is between three

alternatives, therefore the confusion matrix takes on more dimensions, which is shown in Table 2.

Observed Class

TF HB NC

TF TPTF EHBTF ENCTF

P
r
e
d

i
c
t

C
l
a
s
s

HB ETFHB TPHB ENCHB
NC ETFNC EHBNC TPNC

Table 2: Example of a Confusion Matrix with three Cereal Alternatives

For three alternatives (TF, HB and NC) accuracy is determined by adding up the values on the

diagonal and dividing by the sum of all values to determine the percent correctly predicted. All

values not on the diagonal are miss-classi�cations.

This section covered the theoretical framework of the discrete, linear and tree-based methods

and explained the accuracy-performance-measure and how random forest and gradient boosting

are tuned with the help of the caret package. Section 4 will next cover the methodology of the data

simulation and �tting and tuning of the models.
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4 Methodology

The methodology section is probably the most important section of this paper. It explains, step by

step, how the data was simulated based on the demand model presented in the theory section and

how the classical and machine learning methods were tuned and �tted. The method is implemented

in the open source statistical programming software R [28], however it is not R-speci�c and can

be implemented in other information processing software, for example in Python. The statistical

methods, which were �tted include a discrete choice model: logit; two linear models: regression

and LASSO; and three tree-based methods: decision tree, random forest and gradient boosting. The

Fitting and Tuning part of the section explains step by step how the methods were implemented

and what the outputs were. The code for the data simulation and the �tting of the models can be

found in Appendix A. The results are then presented in Section 5.

Data

The goal of this exercise is to simulate data, assign true parameters, then �t a discrete, linear and

machine learning models on the data and see how good the models estimate the true parameters. A

second goal is to be able to manipulate the data by increasing or decreasing the number of features

to con�rm or reject the hypothesis that classical methods over�t the data when the number of

parameters is large. This implies a comparison of the prediction accuracies between all models.

Simulation of data is the preferred method, because it allows the assignment of true coe�cients.

Another reason why data simulation was done, instead of relying on real world data is that a data

split would be required for the training and testing of most machine learning methods. However

available real world data is cross-sectional in nature. A data split could in this case not guarantee

that both sets have similar underlying parameters, i.e. are balanced. A third reason for simulating

data instead of using real world data is having the freedom to determine the data generating process

and i.e. the relationship between the features and the response. In the case of this paper, the

relationship is linear and is based on the demand model framework presented in Section 2.

Note on Simulating Utility

Utility is not observable in the real world by the researcher. Compared to the real world data

collected by Bajari et al. [1] on salty snacks and Paredes et al. [27] on car ownership, the cereals data

in this project was simulated. The data simulation, which is discussed next, calculated utilities using

hypothetical product characteristics. Therefore it was possible to generate probabilities, which are

not observed in the real world. In the real world, only the person, who makes the choice to either
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buy or not buy a product has knowledge of their utility. Further, the researcher only observes the

choice that the consumer made, but doesn’t know if the consumer hesitated between two products

or if the choice was clear, i.e. probabilities are also unobserved.

4.1 Data Simulation

The following section explains the speci�c steps performed to simulate the data. The data simula-

tion below is presented with p = 10 features and n = 100 observations. An example of the typed

code is found in Appendix A. In the appendix-code the observations are set to n = 300, otherwise

the execution is exactly the same.

Assign Indexes

First, the number of observations n is generated, where

n = 1, ..., N

and N = 100. Then the number of product characteristics p is set, where

p = 1, ..., P

and P = 10. Only 3 of these features p will have non-zero coe�cients. By design individuals face

a choice situation between 3 breakfast cereal alternatives j, where

j = 1, 2, 3 .

This index is only for presentation purposes and it is not actually used in the code, since the data

for each alternative, j, is calculated in a separate formula (see Appendix A). This was done with the

purpose of avoiding the building of three-dimensional matrices that have n, p and j as dimensions.

Instead two dimensional matrices were build with dimensions n and p, which were simply repeated

three times.

Assign Coe�cients

The coe�cients for the three relevant features: price, quality and popularity are set to −5, 3 and 5.

The relevant features will always be denoted X1, X2 andX3, while the non-relevant features are

denoted X4, X5, ...XP . Price (X1) has a negative coe�cient because it reduces utility. Quality-

Score (X2) and Popularity-Score (X3) both increase utility, therefore have positive coe�cients. By
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setting the true coe�cients, one can later determine how far model estimates deviate from the true

coe�cients.

A vector called sparce is created, which is a count of the features that are assigned zero coe�-

cients. The vector is made to vary with the number of features p. If for example the number of

features p is increased from 10 to 20, then the number of features which receive zero coe�cients are

no longer 7 as in the case of p = 10 and instead 17, etc. The features with non-zero coe�cients stay

the same three features, regardless if the model has 10 or 90 features. The generated coe�cients

are combined in a one-dimensional beta-vector,

[
−5 3 5 0 0 . . . βp

]
.

Generate Product Characteristics (X-Variables)

By design individuals face a choice situation between three �ctional cereal-alternatives with three

relevant product characteristics p̃. Therefore, three vectors of product characteristic-means (µ) are

next created (one pro alternative). The idea with the means is that the products don’t all cost the

same in each store, therefore vary around a mean value. Each relevant characteristics-vector is p̃

long and is assigned the values in Table 3.

Table 3: Product Characteristics Table

Alternative Index Alternative Name µ Price µ Quality Score µ Popularity Score

j=1 TF (Tiger Flakes) €3.90 5 2

j=2 HB (Honey Bits) €3,50 1 4

j=3 NC (Nougat Crisps) €1.50 1 2

A quality score of 5 contributes more to utility than a quality score of 1. The same ranking applies

to popularity. For example, for the �rst alternative, the vector of means is

[
3.9 5.0 2.0 0 0 . . . µp

]
,

where the �rst three characteristic-means take the values from the table and the rest are assigned

zero. Quality is a product-speci�c variable. Popularity is also a product-speci�c variable re�ecting

the reality that national brands are more recognized than store brands. According to Table 3, Tiger

Flakes is the most expensive alternative. Honey Bits is a bit cheaper and compensates for lower

quality with the highest popularity. Nougat Crisps, which models a store brand cereal, lacks on

both quality and popularity, but compensates with a very low price.
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Generate Covariance Structure of X-Variable. Then the covariance structure of the X’s is

created through a diagonal matrix. On the diagonal the variance of each of the variables is set to

0.2. The variance is not arbitrary and it has implications on the signal-to-noise ratio explained later.

All elements not on the diagonal are zero, meaning the X’s are independent from each other.

Then the X’s are generated using the rmvnorm function from the mvtnorm library [11] setting

µ to the generated means-vectors and σ to the newly created covariance matrix. The product

characteristics vectors are n-observations long and p-characteristics wide. The vector of X-s for

the �rst alternative (j = 1) is


x

(1)
1,1 x

(1)
1,2 . . . x

(1)
1,p

x
(1)
2,1 x

(1)
2,2 . . . x

(1)
2,p

.

.

.

.

.

.

.

.

.

.

.

.

x
(1)
n,1 x

(1)
n,2 . . . x

(1)
n,p

 ,

where the rows are the observations n and the columns are the features p. Since there are 3 al-

ternatives j, three such matricies are generated. The column of prices is p = 1, the column of

qualities, p = 2 and the column of popularities is p = 3. The remaining columns of generated X’s

vary around 0, since their means were assigned to be zero.

Name theColumns. In the next step, the columns of the generated matrices are assigned names.

For example by p = 10, the columns of the Tiger Flakes alternative are called 1.TF, 2.TF, ..., 10.TF

and so on for the other two alternatives. The naming is important especially for the logit and linear

models, which allow for interpretation of the coe�cients. The naming is coded so it adapts to the

variation of the number of features p.

Calculate Representative Utility

Now that the features (X’s) and coe�cients (β’s) have been generated, the representative utility

for the three alternatives is calculated using matrix multiplication. The model for calculating rep-

resentative utility (3.2) serves as a basis, however with a slight modi�cation of the index, to avoid

a three-dimensional matrix. The multiplication

Vn = βp ∗ t(Xn,p),

is performed three times (one for each alternative). The resulting three vectors are combined into

a single vector V , which because of the combination takes on a new dimension j or Vn,j . The rows

represent the observations n and the columns represent the three alternatives as such:
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v1,1 v1,2 v1,3

v2,1 v2,2 v2,3
.
.
.

.

.

.

.

.

.

vn,1 vn,2 vn,3

 .

Table 4 provides the summary statistics of the generated representative utilities. It can be seen from

the table that the means of the representative utilities of the three alternatives are close to each

other. That is because the goal of the simulation is that all three alternatives are incorporated in the

response, instead of just only one or two alternatives. Therefore they have to yield a comparable

amount of utility.

Table 4: Summary Statistics of Generated Utilities

V1 V2 V3

Min. :-6.176 Min. :-3.674 Min. :-3.395

Median : 5.508 Median : 6.087 Median : 5.802

Mean : 5.759 Mean : 5.718 Mean : 5.749

Max. :15.053 Max. :16.076 Max. :13.755

Generating the Random Term ε

The random term ε serves to model product or consumer speci�c characteristics that are not ob-

served by the researcher. It is generated by drawing n ∗ j random numbers from a Gumbel distri-

bution with a location 0 and scale 1.72,

ε ~ Gumbel(0, 1.72).

This is done using the rgumbel command part of the evd [33] package. The random draws are

ordered into a n ∗ j matrix which is then added to the combined representative utility according

to the utility model (3.1). The matrix addition looks like


u1,1 u1,2 u1,3

u2,1 u2,2 u2,3
.
.
.

.

.

.

.

.

.

un,1 un,2 un,3

 =


v1,1 v1,2 v1,3

v2,1 v2,2 v2,3
.
.
.

.

.

.

.

.

.

vn,1 vn,2 vn,3

 +


ε1,1 ε1,2 ε1,3

ε2,1 ε2,2 ε2,3
.
.
.

.

.

.

.

.

.

εn,1 εn,2 εn,3

 .

Because the three products are so designed, that there is no clear winner based on their repre-

sentative utility. The decision will ultimately be tipped in favor of the alternative that is added a

large positive random error.
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Signal-to-Noise Ratio

Now that the utilities are calculated, the model is adjusted to the logit model assumptions. Accord-

ing to Train [36] (p. 48), the variance of the unobserved factors ε should be (π2)/6 or 1.64 in order

to satisfy the extreme value distribution-assumption of the logit model. Therefore, in the next step

the mean variance of the error terms, known as the noise, is calculated. The mean variance of the

representative utilities, known as the signal is also calculated. Their ratio is the signal-to-noise ra-

tio. The scale parameter part of the rgumbel command is adjusted so the resulting noise is 1.64 and

the resulting signal to noise ratio is around 2.5.

Calculating Logit Probabilities

The next step is to convert the calculated utilities into logit probabilities, as was discussed in Section

2. The generated utility is fed through the logit choice probability (3.4), however utility U , is here

used in the formula instead of representative utility V . The formula is Pni = eUni∑
j
eUnj

. This is

done in order to account for the added random error, ε. A generated summary of the probabilities

Pnj , shows that

0 ≤ Pn,j ≤ 1.

Using the apply command and the sum function it was also con�rmed that the choice probabilities

of all alternatives, within an observation are

J∑
i=1

Pni =
∑
i=1

eUni∑
j e
Unj

= 1 .

Generate Response Variable y

Now that the logit probabilities are correctly generated, they are next transformed into multino-

mial draws. Using the apply command, the rmultinom function is applied on in the previous step

generated probability matrix to compute the multinational draws. One random vector is drawn for

each row of the probability matrix. Using the generated probabilities, one object is chosen. As seen

in the output, where the probability is highest, is the chance higher for that column to take on the

value of 1.
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0.05 0.95 0.00

0.01 0.00 0.98

0.23 0.32 0.45
.
.
.

.

.

.

.

.

.

→


0 1 0

0 0 1

0 1 0
.
.
.

.

.

.

.

.

.

 .

Again using the apply function the probabilities equal to 1 are assigned their respective column

indicators (1, 2 or 3). Column one corresponds to the alternative Tiger Flakes, column two to Honey

Bits and column three to Nougat Crisps. This yields the vector



2

1

3

3
.
.
.

yn


,

which takes on the values yn = j, where j = 1, 2 or 3. Hereby is the categorical response variable

y generated.

In one last step, the y-categorical variable is transformed into a factor, with 3 levels, named

choice. In order of column appearance, TF (Tiger Flakes) is assigned to level 1, HB (Honey Bits) to

level 2 and NC (Nougat Chrisps) to level 3, as such:



2

1

3

3
.
.
.

yn


→



HB

TF

NC

NC
.
.
.

yn


.

Tabulating the vector of the y-s shows the response choices in Table 5. An almost equal distribution

of chosen alternatives resulted. This is because the three alternatives were designed to have price,

quality and popularity characteristics that result in nearly the same representative utilities. Only

the random error term is responsible for tipping the scale in favor of one or in favor of another

alternative.
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Table 5: Tabulation of

Response Variable (n=100)

TF HB NC

31 34 35

Safe Data to a Data Frame

Finally, the generated y’s and generated x’s are combined into a data frame which has p ∗ j + 1

variables and n observations. In the so far presented case of p = 10 features and j = 3 alternatives,

there are 10*3+1 columns in the data frame. The 31st variable is the response variable choice. The

saved data frame is called cereals in the r-data �le and looks like


HB x1.TF1 . . . x10.TF1 x1.HB1 . . . x10.HB1 x1.NC1 . . . x10.NC1

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

TF x1.TFn . . . x10.TFn x1.HBn . . . x10.HBn x1.NCn . . . x10.NCn

 ,

where each observation has one row. It can be seen from the matrix, that each alternative has

its very own features (x.TF, x.HB and x.NC). The naming of the levels is important, so the data

transformation for the logit model could be executed.

A second data frame is created for the purpose of �tting linear models. This data set includes the

elements of the �rst data frame and additionally the continuous non-transformed logit probabilities,

from which the categorical variable was calculated. Each alternative has its own probability vector,

therefore that adds three additional columns to the data frame. The data frame is named cereals.lin

in R and looks like


HB p1,1 p1,2 p1,3 x1.TF1 . . . x10.NC1

.

.

.

.

.

. . . .
.
.
.

TF pn,1 pn,2 pn,3 x1.TFn . . . x10.NCn

 .
Including the logit probabilities in the data frame is important, because the linear models (linear

regression and LASSO) only work with continuous response variables.

Because the logit probabilities were used for the calculation of the y-variable, the prediction

performance of models �tted on both data sets cereals and cereals.lin can be compared.
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4.2 Fitting and Tuning the Models

Logit Model

Data Split. The data is split in half: 50% for the sample on which the model will be trained and

50% for the sample on which the performance of the �tted model will be assessed. A general rule

for data splitting is 70-30, however because the data is randomly simulated, and there is enough

of it generated, n = 3001
, it does not make a di�erence what the split is. The training sample is

named cereals_�t and the testing sample, cereals_test.

Data Preparation. The �tting of the logit model will be done using the R package mlogit [7].

Using R’s own glm (generalized linear model) command, of the family binomial, only works for a

discrete situation with two alternatives. In this case the choice is between three alternatives.

Before a model could be �t, the data is transformed into a format for the multinomial logit model

using the mlogit.data command. The following settings are speci�ed:

1. The cereals_�t sample is selected.

2. All columns except the response column are selected as varying.

3. The shape is chosen as "wide", because the data is structured so, that each line hast its own

observation.

4. The response variable is selected for the parameter choice.

The mlogit.data command transforms the training data frame, cereals_�t into the mlogit.data

frame named Cereal_�t and looks like



FALSE HB1 x11 . . . x101

TRUE NC1 x11 . . . x101

FALSE TF1 x11 . . . x101
.
.
.

.

.

.

.

.

.

.

.

.

TRUE HBn
2

x1n
2

. . . x10n
2

FALSE NCn
2

x1n
2

. . . x10n
2

FALSE TFn
2

x1n
2

. . . x10n
2


,

where each observation has three rows, for the three alternatives, with the chosen alternative

labeled as TRUE and the rest as FALSE. The mlogit.data transformation enables the logit model to

1
Initially the number of observations n, was set to 100, however it was determined that after the 50% split, there were

too few observations left for each class. Therefore the number of observations was increased to 300. This way, after the

data-split, 150 observations remain to be divided under the three classes, which make 50 observations per class.

34



sort which features belong to which alternatives. The sorting is done based on the names of the

features. This enables the listed features to �t into p columns. In contrast the non-transformed

data frame had p ∗ j columns. The length of the columns is the total number of observations n

divided by 2, because of the 50:50 data split.

Model Formula. A �exible formula is created that adjusts to the variation of features and looks

like

Cereal_fit$choice = β1 ∗X1 + β2 ∗X2 + ...+ β10 ∗X10.

The linear utility model (3.1) serves as basis. Choice is the response variable, and the features are

the (by mlogit.data) transformed columns: X1 to X10. In this speci�c case, p = 10. The intercept

is removed.

Fitting theModel. The model is �t using the mlogit command from the mlogit-library using the

model formula, the train-data-sample and a seed of 1.

Making Predictions. In-sample-�t is obtained by using the �tted command. This allows the

model to predict the response values on which it was �tted on. The resulting predictions are in the

form of logit probabilities and follow the properties of the logit model: add up to 1 and are between

0 and 1. The out-of-sample �t is obtained by using the predict command, the �tted model, and the

test-sample.

Assessing Performance Using the apply command the highest predicted probability is sought

and its level name is assigned to a new vector called y_hat. This vector is a character vector, which

consists of the alternative abbreviations (TF, HB and NC). The vector is then compared to the true

response vector y or in R called cereals_�t$choice. This comparison looks like



NC

NC

HB

HB
.
.
.

ŷn
2


==



NC

NC

HB

TF
.
.
.

yn
2


.

In the case of in-sample �t the �tted ŷ is compared to the train-sample-y, while in the case of out-of-

sample �t, the predicted ŷ is compared to the test-sample-y. Using the confusionMatrix command
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from the caret package [18] a confusion matrix is build and the accuracy is calculated in accordance

with 3.9. The resulting in-and out-of-sample accuracies are bound in a vector, which is stored for

presentation purposes. The results will be presented in Section 5.

Linear Regression

Data Split. The data split is the same 50:50 split as by logit, however the data frame cereals.lin,

meant for linear models, is used. As a reminder this data frame has three additional columns, made

up of the logit probabilities, to serve as continuous response variables.

Partition the Data for Linear Regression. As described in Section 2, linear models can predict

categorical responses, when the one-vs. rest approach is applied. This approach includes �tting a

linear model for each class. Therefore the training sample is divided into three training samples,

named cereals.TF, cereals.HB and cereals.NC. Each sample is made up of the respective logit prob-

ability as a response variable, and the list of features pertaining to that class. For example, the

matrix


p1 x1.TF1 . . . x10.TF1
.
.
.

.

.

. . . .
.
.
.

pn
2

x1.TFn
2

. . . x10.TFn
2


shows the training sample for the the Tiger Flakes class with p = 10 features. The same partition

method is applied to the remaining classes (HB and NC) in the train and test samples.

Model Formula. Because there are three train samples, three �exible formulas are coded (one

for each class) so that the regression formula can adjust to variations of the number of features p.

For example, the formula for the �rst class, Tiger Flakes with p = 10 features, is

log(pTF1 ) = βTF1 ∗X1.TF + βTF2 ∗X2.TF + ...+ βTF10 ∗X10.TF .

The superscript TF is there to indicate that each regression yields its own vector of coe�cients.

The intercept is removed.

Fitting the Model. Three linear regression models are �t using the respective training samples

and formulas. The estimated coe�cients for p = 10 features are presented in Section 5.

Making Predictions. Using the �tted models, similar to logit the �tted and predict functions are

applied. Predictions are made using the also partitioned test samples.
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Assessing Performance The �tted and predicted log-probabilities from the three classes are

combined into a single vector. From this vector the highest log-probability per observation is cho-

sen using the apply command with the function which.max(x). The column indicator of that prob-

ability is displayed in a new vector re�ecting the same level-assignment as in logit. As a reminder:

TF (Tiger Flakes) is assigned to level 1, HB (Honey Bits) to level 2 and NC (Nougat Chrisps) to level

3. This new vector is named ŷ.

A confusion matrix is build using the �tted-vector ŷ and the response y from the training sam-

ple (in-sample-�t). Then a second confusion matrix is build using the predicted-vector ŷ and the

response y from the testing sample (out-of-sample �t). Adding up the diagonal of the confusion

matrix and dividing through the sum of all of its components yields the accuracy. The in-and

out-of-sample accuracies are saved in a vector for presentation purposes in Section 5.

The generated y-test partitions for the regression classes are not used to assess performance, but

only for the prediction. Performance is assessed by comparing the categorical response variable

cereals$choice to the predicted alternatives. The alternative that yielded the highest utility is chosen

as the predicted value.

LASSO Regression

Data Split The �tting of the LASSO regression assumes the same data split as by the linear

regression, made from the data frame called cereals.lin. Because LASSO is also a linear method, the

one-vs. rest approach and its respective 3-class partition of the training-data applies. Hence, LASSO

uses the same partitioned training data (cereals.TF, cereals.HB and cereals.NC) as linear regression.

Prepare Data for LASSO with Cross-validation For the purposes of cross-validated LASSO

the training sample is divided into X-Train and Y-Train data. This is done for each alternative class.

The response variable is a vector of the log-probability and the features vector is the list of product

features. An example for the class TF (j=1) is displayed in Figure 8.


log(pr1,1)
log(pr2,1)

.

.

.

log(prn
2 ,1)


Y-Train Vector for TF

X1.TF1 . . . X10.TF1
.
.
. . . .

.

.

.

X1.TFn
2

. . . X10.TFn
2


X-Train Matrix for TF

Figure 8: Train Data for LASSO

The X-Test data is sourced from the testing sample for the purpose of assessing the performance
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of the prediction.

Cross Validation for LASSO. During the model tuning, �rst a lasso without cross-validation

was �tted using the rlasso function from the hdm package [5]. It was found that LASSO with

cross validation (CV) yields better and more stable results. Through the cv.glmnet function of

the glmnet package [10], CV is applied using the newly generated Y-Train and X-Train data. The

family parameter is set to gaussian, because a continuous y-variable is present, in the form of a

logit probability. All other settings of the command cv.glmnet including the number of folds (10)

were left to their defaults.

Model Formula. No model formula is necessery by LASSO, because the X-and Y-Train variables

are speci�ed in the glmnet command.

Fitting the Model. LASSO is �tted using the glmnet command using the same parameters as

for the cross-validation, but this time taking the minimum lambda obtained through the cross-

validation. The selected coe�cients of the �tted LASSO are saved and are then run through the lm

command to generate Post-LASSO coe�cients, including signi�cance levels and standard errors.

These coe�cients are saved in a vector for presentation purposes in Section 5.

Making Predictions. In-sample-predictions are made using the minimum lambda that was de-

termined during the cross-validation. Out of sample predictions are made with the cross-validated

LASSO model. For details, please see the R Markdown code in Appendix A.

Assessing Performance. The in-and out-of-sample predictions, composed of one vector per

alternative, are in the form of utilities. They are combined into a single vector and the largest

utility receives the column index of its respective column. This vector is then compared to the

numeric of the response vector of the testing sample, displayed in Figure 9.

As a reminder, the response variable in the testing sample is a character variable with the levels

(TF, HB and NC). Because the prediction outputs of LASSO and linear regression are in the form

of column indicators instead of character vectors, such as by the logit predictions, the response

variable needs to be transformed to a numeric for the purpose of comparison. Transforming the

response variable to a numeric drops the characters and the levels, which are assigned the same as

the column indicators, remain. Level 1 remains the alternative TF, level 2, HB and level 3, NC. The

comparison is presented in Figure 9.

A confusion matrix such as in Table 2 is built using the table function. Then accuracy is calculated

according to Equation 3.9 by summing the diagonal values of the confusion matrix and dividing
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Figure 9: LASSO Prediction Comparison

them through the sum of all of its components. The fraction of correctly predicted choices is saved

in a vector for presentation purposes.

The Y-Test data is not sourced for the prediction comparison between predicted and actual re-

sponses. This comparison is made using the unpartitioned categorical data, as was the case for

linear regression. Please see the detailed code in Appendix A for details.

Decision Tree

Data Split. The data split used for the logit model, is also used for the decision tree.

Prepare data. Extra data pre-processing as in the case of logit, regression or lasso is not required,

because the tree algorithm can alone determine the best split.

Model Formula. The formula for the example case of p = 10 is

cereals_fit$choice = β1 ∗X1.TF + ...+ β11 ∗X1.HB + ...

+β21 ∗X1.NC...+ β31 ∗X10.NC
(4.1)

or simply the y-categorical variable choice is dependent on all remaining variables. According to

the formula, the tree-based method has p∗j features to split on, in this case 10*3. Logit for example

was able to order the features to the respective responses, only having to estimate p features.

For regression and LASSO, the assignment was done manually by partitioning the data by class.

Therefore logit and the linear methods have only p features to estimate, while the decision tree and

the subsequent tree-based methods have p ∗ j features to split on.

Fitting the Model. The tree is �t using the training data and the rpart command from the rpart

package [34]. The tree is tuned with the method parameter class for classi�cation and the complex-

ity parameter cp, which is used to control the size of the decision tree by deciding the number of

splits.
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The parameter cp = 0.001 was used for the initial �t. The tree is then pruned in order to avoid

over�tting the data. Looking at the xerror column printed by printcp(), the complexity parameter

that yields the minimum cross-validated error is chosen. Taking the optimal cp according to this

mechanism for the last run yields a poor classifcation (33%). In this case the tree even chooses

only two alternatives and leaves the third one completely out. Therefore a cp level that yields gut

average results over all runs was chosen cp = 0.06451613.

For this reason the optimal cp displyed by the printcp() function for all runs does not match

the chosen average cp. The di�erence in out-of-sample performance however is minimal (49%

compared 51%) for run 1. The advantage is that the last run now shows a good out-of-sample

classi�cation (47% with the average cp, compared to 33% with the minimal cp). Tree diagrams are

included in Section 5 show on which variables the split was chosen.

Making Predictions. The in-sample-prediction is implemented using the �tted tree-model, the

predict function and the train-data set. The out-of-sample prediction repeats this last step, however

with the testing-data set. The predictions in both cases are in the form of probabilities, which are

all between 0 and 1 and sum to 1.

Assessing Performance The probabilities vectors are run through an apply function with the

goal of outputting the column indicator that has the highest probability. The vector ŷ = 1, 2 or 3

is outputted. The predicted vector is then compared to the response variable y from the testing

sample, which in turn is transformed to a numeric in order to replace the characters with level

indicators (TF = 1,HB = 2 andNC = 3). The two vectors are tabulated into a confusion matrix

using the table command and accuracy is calculated by summing up the diagonal of the matrix and

dividing it through the sum of all of its components.

Random Forest

Data Split. Random forest used the data split already used by the other classi�ers (logit and

decision tree).

Prepare Data. Because the random forest chooses the best variables to split on, not data prepa-

ration is done.

Model Formula. The model formula is the same as for the decision tree (4.1).
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Fitting and Tuning the Model: Manually. First the random forest was �t using the random-

Forest package [21]. Di�erent tuning parameters such as adjusting mtry (the learning rate), ntree

(the number of trees) and the note size were tested and the in-and out-of-sample �t was observed.

According to Breiman’s Manual [3] on Setting up, Using and Understanding Random Forests, mtry

should be the square root of p to yield optimal prediction results. This provided indeed the best �t.

The parameter ntree=500 was found to be optimal, because the reduction of error, at that number

of trees, was found to be the greatest.

Fitting and Tuning the Model: Automatically. A second method for automatic �tting and

tuning the random forest with the caret package [18] was implemented to see if out of sample

performance can be improved. Using the trainControl function, 5 folds of cross validation were

assigned. Then using the train function, the model formula, the train sample, rf as the method

and the trainControl parameter from the previous step, the random forest was trained. Due to

the implemented cross-validation, the variance and bias of the random forest were reduced. The

method with cross-validation proved to yield better out-of-sample performance than the manual

method, and was adapted for the �nal results. Variable importance was also ascertained to see if

the random forest is �nding the three relevant variables to split on. Figures with the �ndings are

presented in Section 5.

Making Predictions. As predictions, the random forest outputted the character-names of the

alternatives, instead of outputing their probabilities, such as in the case of linear regression, lasso

or tree. Therefore it wasn’t necessary to determine which probability is the highest. Therefore a

direct comparison with the training and testing sample was possible.

Assessing Performance. Performance was assessed the usual way: by tabulating the predic-

tions and the true responses in a confusion matrix and calculating the accuracy.

Gradient Boosting

Data Split. The data split is the same as the one used for the other classi�ers (logit, decision tree

and random forest).

Data Preparation. Similarly to the tree and random forest, no data preparation was necessary.

Model Formula. The same model formula 4.1 from the decision tree and random forest was used

for gradient boosting.
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Fitting and Tuning the Model: Manually. First, the model was �t manually using the gbm

package [13] and the gbm function. The distribution was set to multinomial, since there are more

than three categories. The default parameters of the gbm function, listed below, proved to yield the

best out-of-sample results.

1. n.tress was set to 100 by default

2. interaction.depth was set to 1 by default

3. shrinkage or the learning rate was set to 0.1 by default

Fitting and Tuning the Model: Automatically. Similarly to random forest, boosting was

trained a second time, but with the caret package [18], using the same number of cross-validation

folds (5) as the random forest. This time gbm was selected as the method-parameter. Variable im-

portance was assessed and is presented in Section 5. The training and tuning through caret proved

to yield better performance than the manual training, therefore was the chosen method. The man-

ual training is commented-out in the code, but can be reactivated for a closer look into the various

tuning parameters.

Making Predictions. To obtain in-and out-of-sample predictions the predict command and the

�tted model were used, �rst with the cereals_�t data, and then with the cereals_test data.

Assessing Performance. By the automatic �t (with caret) the predictions are in the form of the

alternative labels (TF, HB and NC), therefore were directly compared to the test data.

By the manual �t, the predictions were in the form of probabilities. In this case the alterna-

tive with the highest probability was assigned its alternative label (level) and then the data was

compared to the numeric of the testing sample.

In both cases a confusion matrix was build, from which the accuracies were calculated and saved

in a vector for presentation purposes. The next section presents a comparison of the prediction

results.
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5 Results

In this section the prediction performances of all �tted models are presented. The models were

�tted according to the speci�cs of the previous section.

First, the model characteristics are provided in Table 6, so the results could be reproduced. Sec-

ond, the signal-to-noise ratios are provided for each run in Table 7. Third, a comparison of the

prediction accuracies is provided in Table 8. Fourth, a tabulation of the categorical outcomes of the

train and test samples is provided in Table 9. Next, confusion matrices that show misclassi�cations

per class are shown for the �rst (p = 10) and last (p = 290) runs in Tables 10 and 11. The estimated

relevant coe�cients, for the models that allow coe�cient-estimation, are shown in Table 12, while

Tables 13, 14 and 15 show all estimated coe�cients for the �rst run (p=10). Finally, variable impor-

tance of the tree-based methods is presented in Figures 10, 11, 12. The meaning and implications

of the results is discussed in Section 6.

Table 6: Model Characteristics for Reproducibility

R version 3.6.0 (2019-04-26)

observations n = 300

features p = (10, 50, 150, 290)

assigned coe�cients β1 = −5, β2 = 3, β3 = 5, βrest = 0

cv-folds 5

total run time 2 Minutes

seed 1

Table 7: Signal-to-Noise Ratio

Signal-to-Noise Noise

p=10 2.24 1.64

p=50 3.02 1.64

p=150 2.43 1.64

p=290 2.84 1.64
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Table 8: Prediction Accuracy of all Models (in %)

In-Sample Out-of-Sample

Logit 76 78

Linear Regression 76 71

LASSO with CV 72 77

Decision Tree 67 49

Random Forest 100 63

Gradient Boosting 88 61

p=10

In-Sample Out-of-Sample

Logit 77 62

Linear Regression 72 45

LASSO with CV 62 54

Decision Tree 58 41

Random Forest 100 45

Gradient Boosting 100 45

p=50

In-Sample Out-of-Sample

Logit 100 41

Linear Regression 80 33

LASSO with CV 70 65

Decision Tree 69 47

Random Forest 100 51

Gradient Boosting 100 49

p=150

In-Sample Out-of-Sample

Logit 100 36

Linear Regression 84 29

LASSO with CV 74 64

Decision Tree 65 47

Random Forest 100 50

Gradient Boosting 100 47

p=290

Table 9: Tabulation of Observed Choices

TF HB NC

p=10 51 57 42

p=50 51 57 42

p=150 49 62 39

p=290 51 57 42

cereals_�t

TF HB NC

p=10 52 52 46

p=50 44 52 54

p=150 52 57 41

p=290 48 53 49

cereals_test

TF HB NC

p=10 51 57 42

p=50 51 57 42

p=150 49 62 39

p=290 51 57 42

cereals_�t_lin

TF HB NC

p=10 52 52 46

p=50 44 52 54

p=150 52 57 41

p=290 48 53 49

cereals_test_lin
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Confusion Matricies2

Table 10: Out-of-Sample Confusion Matrices, p=10 (run 1)

TF HB NC

TF 40 4 3

HB 8 38 4

NC 4 10 39

Logit

TF HB NC

TF 39 2 4

HB 11 37 11

NC 2 13 31

Linear Regression

TF HB NC

TF 41 4 1

HB 9 40 10

NC 2 8 35

LASSO

TF HB NC

TF 28 9 8

HB 19 33 25

NC 5 10 13

Decison Tree

TF HB NC

TF 31 6 9

HB 19 41 14

NC 2 5 23

Random Forest

TF HB NC

TF 29 4 9

HB 17 33 8

NC 6 15 29

Boosting

Table 11: Out-of-Sample Confusion Matrices, p=290 (run 4)

TF HB NC

TF 17 13 18

HB 14 22 16

NC 17 18 15

Logit

TF HB NC

TF 20 27 24

HB 16 10 11

NC 12 16 14

Linear Regression

TF HB NC

TF 34 13 12

HB 11 32 7

NC 3 8 30

LASSO

TF HB NC

TF 31 26 13

HB 6 15 11

NC 11 12 25

Decison Tree

TF HB NC

TF 16 9 8

HB 24 36 18

NC 8 8 23

Random Forest

TF HB NC

TF 23 18 11

HB 17 27 17

NC 8 8 21

Boosting

2
The three �ctional classes are HB for Honey Bits, TF for Tiger Flakes and NC for Nougat Crisps. The matrices on the

page are not labeled with the goal to save space. The labeling is assumed from Figure 2
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Relevant Coe�cients3

Table 12: Relevant Coe�cients

p=10 p=50 p=150 p=290

X1 -3.10 -3.35 -28.90 -12.35

X2 1.85 1.92 16.58 6.58

X3 3.21 3.31 31.08 11.22

Logit

p=10 p=50 p=150 p=290

X1.TF -3.91 -4.36 -10.06 -677.76

X2.TF 1.45 1.54 4.60 634.97

X3.TF 2.19 2.92 6.15 -386.86

X1.HB -4.35 -2.73 5.96 -41.00

X2.HB 1.09 1.37 -8.14 -49.80

X3.HB 2.69 1.11 -4.57 43.41

X1.NC -4.86 -4.53 4.29 -3.29

X2.NC 1.49 1.07 -6.53 -7.96

X3.NC 0.95 0.78 -10.66 4.20

Linear Regression

p=10 p=50 p=150 p=290

X1.TF -3.90 -3.87 -4.20 -3.52

X2.TF 1.46 0.79 1.47 0.78

X3.TF 2.15 3.67 2.71 3.09

X1.HB -4.35 -2.73 -3.57 -3.21

X2.HB 1.18 0.86 0.95 1.61

X3.HB 2.66 1.32 2.03 1.64

X1.NC -4.87 -4.00 -5.98 -4.21

X2.NC 1.49 1.06 1.00 0.86

X3.NC 0.97 1.24 2.12 0.82

LASSO

3
The coe�cients X1, X2 and X3 refer to the features price, quality and popularity. For the model logit, these coe�cients

are grouped for the three classes together, while for regression and LASSO, they are separately estimated for each class.
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Table 13: Estimated Logit Coe�cients, p=10

Dependent variable:

choice

X1 −3.096
∗∗∗

(0.414)

X2 1.852
∗∗∗

(0.248)

X3 3.213
∗∗∗

(0.420)

X4 −0.004

(0.302)

X5 −0.026

(0.290)

X6 −0.333

(0.310)

X7 0.001

(0.304)

X8 0.225

(0.296)

X9 −0.060

(0.309)

X10 0.282

(0.325)

Observations 150

Log Likelihood −91.375

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01
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Table 14: Estimated Regression Coe�cients, p=10

Response:

log(prTF )
X1.TF −3.907

∗∗∗

(0.437)

X2.TF 1.451
∗∗∗

(0.331)

X3.TF 2.192
∗∗∗

(0.529)

X4.TF −0.181

(0.554)

X5.TF 0.037

(0.481)

X6.TF 0.068

(0.505)

X7.TF 0.224

(0.558)

X8.TF 1.181
∗∗

(0.556)

X9.TF 0.201

(0.527)

X10.TF −0.081

(0.584)

Obs. 150

R
2

0.667

Adj. R
2

0.644

RSE 2.911

(df = 140)

F Stat. 28.102
∗∗∗

(df = 10; 140)

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Response:

log(prHB)
X1.HB −4.351

∗∗∗

(0.437)

X2.HB 1.089
∗∗

(0.548)

X3.HB 2.688
∗∗∗

(0.376)

X4.HB −0.026

(0.542)

X5.HB 0.462

(0.566)

X6.HB 0.462

(0.553)

X7.HB 0.334

(0.568)

X8.HB 0.008

(0.549)

X9.HB −0.022

(0.563)

X10.HB 0.204

(0.618)

Obs. 150

R
2

0.644

Adj. R
2

0.619

RSE. 3.077

(df = 140)

F Stat. 25.363
∗∗∗

(df = 10; 140)

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Response:

log(prNC)
X1.NC −4.860

∗∗∗

(0.456)

X2.NC 1.494
∗∗∗

(0.464)

X3.NC 0.954
∗∗

(0.367)

X4.NC −0.283

(0.579)

X5.NC −0.049

(0.524)

X6.NC 0.304

(0.514)

X7.NC 0.545

(0.490)

X8.NC −0.349

(0.477)

X9.NC 0.076

(0.534)

X10.NC −0.769

(0.518)

Obs. 150

R
2

0.720

Adj. R
2

0.700

RSE. 2.803

(df = 140)

F Stat. 36.010
∗∗∗

(df = 10; 140)

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01
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Table 15: Estimated Post LASSO Coe�cients, p=10

Response:

log(prTF )
X1.TF −3.901

∗∗∗

(0.427)

X2.TF 1.465
∗∗∗

(0.321)

X3.TF 2.150
∗∗∗

(0.511)

X7.TF 0.199

(0.537)

X8.TF 1.163
∗∗

(0.536)

Obs. 150

R
2

0.667

Adj. R
2

0.655

RSE 2.863

(df = 145)

F Stat. 58.035
∗∗∗

(df = 5; 145)

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Response:

log(prHB)
X1.HB −4.348

∗∗∗

(0.422)

X2.HB 1.181
∗∗

(0.525)

X3.HB 2.658
∗∗∗

(0.358)

X5.HB 0.470

(0.553)

Obs. 150

R
2

0.641

Adj. R
2

0.632

RSE 3.026

(df = 146)

F Stat. 65.274
∗∗∗

(df = 4; 146)

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01

Response:

log(prNC)
X1.NC −4.865

∗∗∗

(0.435)

X2.NC 1.494
∗∗∗

(0.452)

X3.NC 0.965
∗∗∗

(0.351)

X7.NC 0.545

(0.474)

X10.NC −0.819

(0.496)

Obs. 150

R
2

0.718

Adj. R
2

0.708

RSE 2.764

(df = 145)

F Stat. 73.855
∗∗∗

(df = 5; 145)

Note: ∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01
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p=10
p=290

Figure 10: Decision Tree Split Results

p=10 p=290

Figure 11: Random Forest Variable Importance
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p=10 p=290

Figure 12: Gradient Boosting Variable Importance
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6 Discussion

This section discusses the meaning and implications of the results. First, the hypotheses in relation

to the research question are presented. Next, the performance of the �tted models is discussed.

Hypotheses

The �rst hypothesis, which considers the dimentionality problem, discussed in Section 1 is that

a classic discrete choice model is good for a small number of features p, but starts to over �t as p

nears the number of observations n. Due to over�tting, it is expected that for a p, which nears n,

the prediction performance of the discrete model falls. The second hypothesis is that ML methods

perform better than classical methods, when the number of features p nears the number of obser-

vations n, as suggested in Section 1. The third hypotheses is that linear models will have a better

prediction accuracy as non-linear models, because the data generating process is linear in nature.

The applied linear models in this exercise are multinomial logit, linear regression and LASSO. Ap-

plied non-linear models are decision tree, random forest and gradient boosting. A sub-hypothesis

to the third hypothesis is the presumption that a linear model, which practices variable selection

will outperform a linear model which doesn’t, because the simulated data is sparse.

Model Characteristics for Reproducibility

The predictions were run with the characteristics presented in Table 6. Running the predictions

with di�erent characteristics will yield di�erent results.

Signal-to-Noise Ratio

The signal-to-noise ratio (SNR) for all runs is presented in Table 7. The table shows that each run

hat a su�cient signal-to-noise (SNR > 2) and conforms to the assumptions of the logit model

(noise of π2/6 or 1.64) as perscribed by Train [36] (p. 48).

Model Performance

In Table 8, the in-and out-of-sample prediction accuracies for the six models over four runs are

presented. Here the focus is on out-of-sample prediction performance, which is measured in per-

cent. Starting with the �rst run, where p = 10, the logit model has the best out-of-sample �t. The

best explanation for this, is that the data simulation was designed for a discrete choice model that

corresponds to the assumptions of the logit model. Therefore, it should be no surprise that the

logit model performs the best in the �rst run. LASSO is close second and linear regression is third.
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Lasso, which practices variable selection, performs better than linear regression. As a reminder,

the relevant coe�cients are three, where in the �rst run the number of features p is set to 10. That

means that sparsity is present in the data. Because linear regression �ts a model with all available

variables, its �t will be worse than LASSO under sparsity. Next, the tree-based methods perform

substantially worse, with random forest being the best of the three. The decision tree tends to

perform, throughout all runs, worse than the random forest, because of its high variance. The in-

sample �t of the random forest and boosting is near 100, which indicates over�tting. All attempts

to reduce this in-sample-over�tting resulted in reducing the out-of-sample �t, therefore it was left

as is. In contrast, the linear models show similar in magnitude in-and out-of-sample �ts, which

indicates a good �t.

Continuing with the second run, where p = 50, the multinomial logit model continues its

leadership in prediction performance, but we see a substantial drop in the performance of all other

models. LASSO remains the second best model. Linear regression, random forest and boosting all

have the same performance. By 50 features the linear regression is starting to over�t and has low

performance. A possible reason for the poor performance of the tree-based methods is that they

have de facto p ∗ 3 features to split on, while regression, logit and LASSO only estimate p features

per run.

The third run, with p = 150 features, observes a massive decrease in the performance of the

logit model and linear regression. LASSO is the best predictor, which is due to its linear nature

and variable selection quality. Random forest and gradient boosting, which, like lasso, also make

predictions based on the most important variables are second and third best. Logit, which is clearly

over�tting, because of its now perfect in-sample performance, takes second to last place. At this

point a decision tree is doing better than logit. Linear regression rounds out the end.

The �nal and fourth run, increases the number of features p to 290, while the number of ob-

servations n stays by 300. This is an example of what is called wide data [32]. Here over�tting is

present by logit and linear regression, due to the big di�erences between their in and out-of-sample

performances. The best �tted model is LASSO, clearly pro�ting from its variable selection quality.

Its out-of-sample performance is also very close to its in-sample-performance. The next best model

is random forest, which tends to perform around as good as gradient boosting throughout all the

runs. Tree comes close after random forest, which is to be expected, due to its high variance. At

this point all tree-based methods are outperforming the logit model and therefore validating the

second hypothesis. The over�tting by the classical models (logit and linear regression) seen in

runs 3 and 4 con�rms the �rst hypothesis. The fact that LASSO, a linear model, outperforms the

non-linear tree-based models, con�rms the third hypothesis.
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Tabulation of Observed Choices

Table 9 shows the response variable tabulated for the test and train samples. As a reminder, linear

regression and LASSO were �tted using a data frame called cereals.lin, while the remaining methods

using a data frame called cereals. These data frames were split in the middle to form train and test

samples. The tabulation in Table 9 serves to prove that the two data frames, on which the methods

were �t and then compared, are the same. This allows for a comparison of the regression methods

linear regression and LASSO, with the classi�cation methods logit, decision tree, random forest

and gradient boosting.

Further, the tabulation shows that all classes were about equally chosen. That is not surprising,

because their representative utilities were modeled to have similar means.

The tabulation in Table 9 also shows that the train and test sets are balanced and have similar

tendencies. If one looks closely, it could be seen that the HB class is observed slightly more than the

TF class, and that the NC class is observed the least of the three. This �nding is consistent for both

the test and train samples. The consistency arises from the fact that data was simulated according

to the same process. Therefore a simple data-splitting method such as the 50:50 Train/Test split

resulted in balanced samples.

Confusion Matrices

The confusion matrices presented in Tables 10 and 11 o�er a deeper look into the out-of-sample

classi�cation performance of the six models. Speci�cally it was examined if any of the models have

an inclination to predict a particular class better or worse, than the others.

Under perfect classi�cation, the confusion matrices would only show values on the diagonal.

These values would match the values expressed in the tabulation of observed choices in Table 9.

Because the classi�cation is not perfect however, there are values outside of the diagonal. Each

classi�cation is based on n = 150 observations, which is the size of the training sample. That

allows for around 50 observations per class, since there are 3 classes.

Table 10, where p = 10 features, shows more values on the diagonal than Table 11 (p = 290

features), which has more miss-classi�cations. This is not surprising, because adding more fea-

tures tends to confuse the prediction models. Overall there were no large disparities in the miss-

classi�cation between the classes. The models have no inclination toward predicting a particular

class better or worse.
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Estimated Relevant Coe�cients

Table 12 shows the estimated relevant coe�cients over all runs for the models that allow for the

interpretation of coe�cients: logit, linear regression and LASSO. The relevant coe�cients are: X1

= price, X2 = quality and X3 = popularity which were set to X1 = −5, X2 = 3 and X3 = 5 in the

data simulation.

The �rst sub-table shows the coe�cients for logit. Because the logit model predicts the categor-

ical response, only one coe�cient for all three classes is estimated. In contrast linear regression

and LASSO estimate the relevant coe�cients separately for each class.

In the �rst two runs, the logit model predicts the coe�cients with a disparity around 2 from the

true coe�cients. The last two runs show a bigger disparity, especially for run 3. This is due to

over�tting. The regression, similarly to logit, predicts the �rst two runs with a small di�erence to

the true coe�cients. By run 3, over�tting is present and run 4 shows an extreme di�erence from

the true coe�cients. LASSO in contrast is able to keep its good predicting power through run 3

and 4.

The signs for all predicted coe�cients are correct. However regression and LASSO are having

di�culty predicting the coe�cients of the class NC correctly, because the discrepancy by that

coe�cient is higher than by the other two. This could be because NC was slightly less chosen from

the three alternatives and there were not enough observations to estimate the coe�cients on.

All Estimated Coe�cients, p=10

Tables 13, 14 and 15 show all estimated coe�cients for p = 10 features. Because it would be

di�cult to show the coe�cients for p = 50, p = 150 or p = 290, only the coe�cients of the

�rst run are presented. Details such as signi�cance levels and residual standard errors are shown.

Overall deviate the coe�cients slightly from the assigned coe�cients. Tree-based methods don’t

estimate coe�cients, therefore are not shown.

In Table 13, the logit model �nds the �rst three coe�cients correctly as signi�cant and the re-

maining as insigni�cant. Signs are also predicted correctly.

The regression coe�cients presented in Table 14 result from the regressions executed for each

alternative (TF, HB and NC). At p = 10 features the regression has no di�culty to estimate the

relevant coe�cients for all classes. The observations n are 150 and adjusted R2
varies from 65%

to 70%. All coe�cients are signi�cant to the 1% level except for X2.HB and X3.NC, which are

signi�cant to the 5% level. The regression erroneously estimated X8.TF as signi�cant to the 5%

level although that coe�cient was set to zero in the simulation.

Table 15 shows the estimated Post-LASSO coe�cients, which is a linear regression �tted after

55



the variable selection step by LASSO. LASSO was in turn �tted just like linear regression, separately

on each class. The variable selection chose correctly the relevant coe�cients for all three classes,

which were also signi�cant in Post-LASSO. The variable X1 tends to be better predicted than the

variable X3, due to its smaller di�erence from the true coe�cient.

Variable Importance of Tree-Based Methods

To provide model interpretation of the tree-based methods, plots of the most important variables

are presented in Figures 10, 11 and 12 for the �rst (p = 10) and last (p = 290) out-of-sample runs.

The decision tree plot for p = 10 in Figure 10 shows that the split was done overwhelmingly

on relevant variables. These are the variables that have X1 to X3 in their names. In the �rst split

(p=10) are the variables X1.TF, X2.TF and X3.Tf present. The p = 290 split shows that one of the

relevant variables was included as the very �rst split (X1.NC). Since the trees are not grown deep,

no further splits are observed.

The random forest variable-importance-plot in Figure 11 shows splitting on which variables

contributes the most to the total decrease in node impurities averaged over all trees [21]. For

classi�cation, the node impurity is measured by the Gini-Index. In the p = 10 sub-�gure, one can

see that variables that carry the designation X1 to X3 are all included almost consecutively in the

top 10. That means that by p = 10 features, the random forest recognizes the best variables to split

on. For the p = 290 features sub-�gure only six out of the nine relevant variables are included

in the top 20 plot. In this case even the random forest is having a hard time �nding the relevant

variables to split on. Similar �ndings for the �rst and last runs are observed for gradient boosting

in Figure 12.
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7 Conclusion

This section presents the conclusion. First, important �ndings are discussed in relation to the re-

search question raised in Section 1. Second, the validity and applicability of the results is discussed.

Important Findings

The results were overall satisfactory and con�rmed the hypotheses. Further, they con�rmed the

conclusion from the literature that, by high dimensional data, applying ML methods for prediction

outperforms classical methods. The logit model performs well with small p, however when p is

increased starts to over�tt the data. Here come the machine learning methods in use, which tend

to perform well when p is close to n. Speci�cally LASSO proved to be the best linear prediction

method. Therefore an important �nding is that linear data can be best predicted with a linear

model.

A possible reason for the poorer than LASSO performance of the tree-based methods is that they

had p ∗ j features to split on, while linear regression, logit and LASSO only p features to estimate.

The model formula for the tree-based methods simply piled all the variables together. Figuring

out which variable belongs to which alternative was left to the tree-based method to determine. In

contrast the logit model transformed the data, structuring the features to the individual alternatives.

For regression and LASSO the structuring was done manually by dividing the training sample for

each alternative class and �tting the model on it. When coding the formula for the tree-based

methods, it was assumed that the they could alone �gure out which feature belongs to which

alternative, therefore all variables were simply included on the right side of the equation. Therefore

data pre-processing may be required. Section 8 discusses recommendations for further study.

Another explanation why random forest and gradient boosting were not better than LASSO as

originally expected is that the data generating process is linear in nature. Tree-based methods

perform especially well on data that have a non-liner underlying relationship.

Validity and Applicability of Results

The results are valid for the simulated data on which they were trained and tested. There are serious

doubts that the simulated data resembles real world data considering its complexities. However

other papers based on real world data such as the ones mentioned in Section 2, show substantial

bene�ts of using machine learning methods for prediction. Therefore there is a case that the results

are also valid in real world applications.
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8 Outlook

In this section an outlook is given that covers collected ideas and recommendations for further

research. The section also discusses how the �ndings contribute to knowledge in the �eld and why

the conducted research is important.

Recommendations for Research and Practice

An obvious area for further research is to simulate data with a non-linear data generating process,

then �t the same models on it. The expectation would be that, non-linear tree-based models would

perform better than the linear LASSO model.

Another potential extension of the simulated data would be varying the number of relevant

variables with the number of features. The simulation in this paper assumed only three relevant

variables. Letting the number of relevant variables increase with the number of features would

reduce sparsity and increase the performance of methods that don’t practice variable selection.

Yet a further extension of the six models would be creating an combined ensemble model from

the above �tted methods with weights, such was done by Bajari [1]. The goal would be to improve

the prediction performance more than the best model did individually.

Another path for further research could be to simulate data that has qualities, which go beyond

the estimation possibilities of a basic logit model. This would include simulating random taste

variation, unrestricted substitution patterns and correlation between unobserved factors [36] (p.

50). The BLP-Literature [2] [25] used real world data, but it would be interesting to see if data with

these qualities could be simulated. Such an exercise of making the data more suitable to a mixed

logit model would potentially reduce the applicability of machine learning methods.

To test the validity of the results in this paper, the same models can be trained on real world data

to see if the results are consistent.

In Section 5 it was observed that pre-processing of data could potentially lead to a better �t with

the tree-based methods. For example re-structuring the data so tree-based methods are �t respec-

tively on the features of each class, rather than on all features, would potentially ease prediction.

This conclusion is similar to the conclusion of Paredes et. al. [27], who also mention that machine

learning methods could perform better under the condition of pre-processing their inputs. To what

extent this conclusion also applies in the case of the simulated data in this paper remains to be seen.

Another area of improvement considers the coding syntax of the project. Further work would

allow the automation of the code through application of custom functions. Currently as the code

is, there is a lot of repetition of the same tasks such as in-and out-of-sample predictions, confusion
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matrix building and accuracy calculation. These commands could be automated, which in turn

would increase the clarity and replicability of the code.

How �ndings contribute to knowledge in the �eld

The �ndings underpin the importance of machine learning methods for prediction, which are al-

ready popular in academia and business. This paper adds to the body of knowledge of how to �t,

tune and assess the performance of classical statistical and machine learning methods. It further

shows pre-processing of data for some of the models. The research is important, because it practices

modern techniques which are in high demand. The detailed and accessibly explained methodol-

ogy makes the �eld to newcomers more reachable and the provided code serves as a reference for

similar prediction exercises.
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Appendix A: R Code

The next page presents the code used for the simulation of the data, �tting of the models and

compiling of the results.
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Code: Demand Estimation with Machine Learning

Georgi Zhelev

The code is presented and explained. Outputs are shown where appropriate. To save space and maintain
clarity, selected results are shown at the end. For further details please see the executable r-data file, which is
provided with the data storage device.

1 Model Assumptions
The first section of the code represents the model assumptions.

1.1 Model Characteristics
This line of code determines the number of cross-validation folds and could be changed to increase com-
putational speed. The results were generated with 5 folds, which amounted to 2 minutes of run time.
Cross-Validation is used for the tuning of ML-Methods.
cv.folds<-5

The model assumptions are 10, 50, 150 and 290 features, p. The number of observations n is kept constant at
300. The parameter cvfolds was already assigned to 5.
p<-c(10, 50, 150, 290)
n=300
cvfolds <- cv.folds

1.2 Labels
Next, the names of the four runs and alternatives are set up, which will later be used to label the rows and
columns of the results-data-frames.
name<-c(p[1], p[2], p[3], p[4])
names<-c("p=", "p=", "p=", "p=")
index<-paste(names, name, sep = "", collapse = NULL)
alt.names <- c("TF", "HB", "NC")
run.names <- c("run1", "run2","run3", "run4")

1.3 Create Storage for Loop Results
Storage data frames in the form of lists are created for the storage of results such as signal-to-noise ratios,
accuracies, coefficients, confusion matrices, variable importance and tabulations of the y-variable.
details <- list()
coeff.logit <- list()
details1 <- list()
details3 <- list()
details4 <- list()

coeff.reg <- list()
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coeff.reg.TF<- list()
coeff.reg.HB<- list()
coeff.reg.NC<- list()

coeff.lasso <- list()
coeff.lasso.TF <- list()
coeff.lasso.HB <- list()
coeff.lasso.NC <- list()

cm.logit <- list()
cm.reg <- list()
cm.lasso <- list()
cm.tree <- list()
cm.rf <- list()
cm.boost <- list()

rf_plot <- list()
gbm_plot <- list()

summ_fit_sample <- list()
summ_test_sample <- list()
summ_fit_lin_sample <- list()
summ_test_lin_sample <- list()

1.4 Loop
Finally a for-loop is created to vary based on the assigned p’s.
for (i in 1:length(p)) {

p[i]<-p[i]

2 Simulation
2.1 Set Relevant Coefficients
Next the relevant coefficients are set to -5, 3 and 5. A vector sparce is created to count the number of
non-relevant features. In the case of the first run p=10, which will serve as an example, are the non-relevant
coefficients 7.
pr<--5 #price
qual<-3 #quanlity
pop<-5 #popularity
sparce<-p-(length(pr)+length(qual)+length(pop)) #count 0-betas for sparcity
sparce

## [1] 7

Then a beta vector is created with the 3 relevant coefficients, while the rest are set to 0.
set.seed(1)
beta2<- c(pr, qual, pop, rep(0, sparce))
beta2

## [1] -5 3 5 0 0 0 0 0 0 0
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2.2 Generate X-Variables
In the next step the price, quality and popularity averages are assigned to the three alternatives (TF, HB
and NC). The alternatives are modeled to be dissimilar, therefore each has a different magnitude of price,
quality and popularity. Below are the coefficient-means of the first alternative shown.
prices<-c(3.90, 3.50, 1.50)

mu1=c(rep(prices[1] , length(pr)), rep(5 , length(qual)), rep(2 , length(pop)),
rep(0, sparce)) #TF

mu2=c(rep(prices[2] , length(pr)), rep(1 , length(qual)), rep(4 , length(pop)),
rep(0, sparce)) #HB

mu3=c(rep(prices[3] , length(pr)), rep(1 , length(qual)), rep(2 , length(pop)),
rep(0, sparce)) #NC

round(mu1, 1)

## [1] 3.9 5.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Next the covariance structure of the x ’s is created, which is based on a diagonal matrix. Therefore the x ’s are
not dependent on each other.
set.seed(1)
covar=diag(0.2, p, p)
head(covar)

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,] 0.2 0.0 0.0 0.0 0.0 0.0 0 0 0 0
## [2,] 0.0 0.2 0.0 0.0 0.0 0.0 0 0 0 0
## [3,] 0.0 0.0 0.2 0.0 0.0 0.0 0 0 0 0
## [4,] 0.0 0.0 0.0 0.2 0.0 0.0 0 0 0 0
## [5,] 0.0 0.0 0.0 0.0 0.2 0.0 0 0 0 0
## [6,] 0.0 0.0 0.0 0.0 0.0 0.2 0 0 0 0

After that the x’s are created using the covariance structure and the means.
X1=rmvnorm(n, mean=mu1, sigma=covar)
X2=rmvnorm(n, mean=mu2, sigma=covar)
X3=rmvnorm(n, mean=mu3, sigma=covar)
str(X1)

## num [1:300, 1:10] 3.62 4.58 4.31 4.51 3.83 ...

The created X-matrices are 300 observations long and 10 observations wide.

Finally the x’s are packed into a matrix for each alternative and are labeled.
x1<-matrix(X1, nrow = n, ncol = p)
colnames(x1)<-paste(as.character(1:p), rep(".TF", p), sep = "")
x2<-matrix(X2, nrow = n, ncol = p)
colnames(x2)<-paste(as.character(1:p), rep(".HB", p), sep = "")
x3<-matrix(X3, nrow = n, ncol = p)
colnames(x3)<-paste(as.character(1:p), rep(".NC", p), sep = "")

2.3 Calculate Utility
To obtain representative utility, matrix multiplication is done and the X-matrices are transposed.
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V1<-beta2%*%t(x1) #1st product
V2<-beta2%*%t(x2) #2nd product
V3<-beta2%*%t(x3) #3rd product

The resulting representative utilities are bound into a single matrix.
V<-cbind(t(V1), t(V2), t(V3))
summary(V)

## V1 V2 V3
## Min. :-6.176 Min. :-3.674 Min. :-3.395
## 1st Qu.: 3.288 1st Qu.: 3.197 1st Qu.: 3.805
## Median : 5.508 Median : 6.087 Median : 5.802
## Mean : 5.759 Mean : 5.718 Mean : 5.749
## 3rd Qu.: 8.054 3rd Qu.: 7.852 3rd Qu.: 7.943
## Max. :15.053 Max. :16.076 Max. :13.755
str(V)

## num [1:300, 1:3] 5.28 1.25 4.66 3.19 7.09 ...

2.4 Generate Error Term
Next, the error term is generated using the package for generating extreme values.
#install.packages("evd")
library(evd)
set.seed(1)
e1<-rgumbel(n*ncol(V), loc=0, scale=1.72)
e1<-matrix(e1,n,ncol(V),byrow=FALSE)
str(e1)

## num [1:300, 1:3] 0.483 -0.287 3.313 3.384 1.428 ...

The model is completed by adding the unobserved (random) values of utility.
z1<-V+e1

2.5 Investigate Signal-to-Noise Ratio

signal<-mean(var(V))
noise<-mean(var(e1))
noise

## [1] 1.64465

The noise is according to logit-model assumptions.
snr<-mean(var(V))/mean(var(e1))
snr

## [1] 2.236826

The signal-to-noise is above 2.

2.6 Calculate Logit Probabilities

pr1 = exp(z1)/apply(exp(z1), drop=F, 1, sum)
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The probabilities have the necessary qualities. They are between 0 and 1.
specify_decimal <- function(x, k) trimws(format(round(x, k), nsmall=k))
head(specify_decimal(pr1, 2))

## [,1] [,2] [,3]
## [1,] "0.05" "0.95" "0.00"
## [2,] "0.01" "0.00" "0.98"
## [3,] "0.23" "0.32" "0.45"
## [4,] "0.40" "0.00" "0.60"
## [5,] "0.95" "0.05" "0.00"
## [6,] "0.00" "0.96" "0.04"

They sum to 1.
head(apply(pr1, drop=F, 1, sum))

## [1] 1 1 1 1 1 1

Next using the apply command, the rmultinom function is applied on in the previous step generated probability
matrix. One random vector is drawn for each row of the probability matrix. Using the generated probabilities
one object is chosen. As seen in the output, where the probability is highest, is the chance higher for that
column to take on the value of 1.
mChoices1 = t(apply(pr1, 1, rmultinom, n = 1, size = 1))
head(mChoices1)

## [,1] [,2] [,3]
## [1,] 0 1 0
## [2,] 0 0 1
## [3,] 0 1 0
## [4,] 0 0 1
## [5,] 1 0 0
## [6,] 0 1 0

2.7 Generate Y-Variable
By replacing 1-s with respective column labels, a categorical ranking results with the options y=1,2 or 3.
y1 = apply(mChoices1, 1, function(x) which(x==1))
head(y1)

## [1] 2 3 2 3 1 2
length(y1)

## [1] 300
tabulate(y1)

## [1] 103 109 88

2.8 Safe Data
A data frame for not linear Methods: logit, tree, random forest and boosting is saved.
cereals<-data.frame(y1,x1,x2,x3)
str(cereals)

## 'data.frame': 300 obs. of 31 variables:
## $ y1 : int 2 3 2 3 1 2 2 3 1 1 ...
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## $ X1.TF : num 3.62 4.58 4.31 4.51 3.83 ...
## $ X2.TF : num 5.08 5.17 5.35 4.95 4.89 ...
## $ X3.TF : num 1.63 1.72 2.03 2.17 2.31 ...
## $ X4.TF : num 0.7134 -0.9904 -0.8897 -0.0241 0.2489 ...
## $ X5.TF : num 0.147 0.503 0.277 -0.616 -0.308 ...
## $ X6.TF : num -0.3669 -0.0201 -0.0251 -0.1856 -0.3164 ...
## $ X7.TF : num 0.21798 -0.00724 -0.06967 -0.17633 0.16305 ...
## $ X8.TF : num 0.3302 0.4221 -0.6577 -0.0265 0.3437 ...
## $ X9.TF : num 0.2575 0.3673 -0.2138 0.4919 -0.0502 ...
## $ X10.TF: num -0.137 0.266 0.187 0.341 0.394 ...
## $ X1.HB : num 3.83 3.72 3.52 4.1 3.7 ...
## $ X2.HB : num 1.173 1.192 1.69 0.206 0.804 ...
## $ X3.HB : num 4.58 3.43 4.43 4.17 4.54 ...
## $ X4.HB : num -0.3594 1.0001 -0.8194 0.0188 -0.6364 ...
## $ X5.HB : num -0.7167 0.1485 0.0595 -0.0594 -0.0263 ...
## $ X6.HB : num 0.41736 -0.06229 -0.46215 -0.00624 0.09111 ...
## $ X7.HB : num 0.808 -0.329 -0.773 -0.164 0.332 ...
## $ X8.HB : num -0.0253 -1.2422 -0.5187 -0.047 -0.1689 ...
## $ X9.HB : num 0.843 -0.144 -0.623 0.742 1.064 ...
## $ X10.HB: num 0.706 -0.463 -0.448 0.695 -0.397 ...
## $ X1.NC : num 1.22 1.04 1.52 1.12 2.18 ...
## $ X2.NC : num 0.504 0.837 1.444 0.163 1.186 ...
## $ X3.NC : num 1.03 1.38 1.26 2.33 1.67 ...
## $ X4.NC : num -0.014 -0.2395 0.0635 -0.1548 -0.7202 ...
## $ X5.NC : num -0.116 0.123 -0.301 -0.623 -0.232 ...
## $ X6.NC : num 0.239 0.588 -0.645 -0.349 0.529 ...
## $ X7.NC : num -0.2502 -0.0762 0.3721 0.2759 0.0937 ...
## $ X8.NC : num 0.7193 0.6471 0.1148 -0.1233 -0.0928 ...
## $ X9.NC : num 0.249 0.737 -0.307 0.716 -0.498 ...
## $ X10.NC: num 0.08301 0.45325 -0.00687 -0.06702 0.82171 ...

for linear Methods: regression and lasso, a second data frame is saved. The second data frame is the same as
the first, except for that it has three additional probability variables (X1, X2 and X3).
cereals.lin<-data.frame(y1,pr1,x1,x2,x3)
names(cereals.lin)

## [1] "y1" "X1" "X2" "X3" "X1.TF" "X2.TF" "X3.TF"
## [8] "X4.TF" "X5.TF" "X6.TF" "X7.TF" "X8.TF" "X9.TF" "X10.TF"
## [15] "X1.HB" "X2.HB" "X3.HB" "X4.HB" "X5.HB" "X6.HB" "X7.HB"
## [22] "X8.HB" "X9.HB" "X10.HB" "X1.NC" "X2.NC" "X3.NC" "X4.NC"
## [29] "X5.NC" "X6.NC" "X7.NC" "X8.NC" "X9.NC" "X10.NC"

2.9 Assign Levels
Format the y-column in the data frame as a factor and call it “choice”.
choice<-factor(cereals$y1)
head(choice)

## [1] 2 3 2 3 1 2
## Levels: 1 2 3

Name the levels of the as-factor-formatted choice-column. 1 for Tiger Flakes (TF), 2 for Honey Bits (HB)
and 3 for Nougat Crisps (NC).
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levels<-c("TF", "HB", "NC")
levels(choice)<-levels
head(choice)

## [1] HB NC HB NC TF HB
## Levels: TF HB NC

Replace the “y” column with the “choice” column in the data frames.
cereals<-cbind(choice, cereals[,-1])
cereals.lin<-cbind(choice, cereals.lin[,-1])

3 Model Fitting and Tuning
The fitting of the six classical and machine learning models is presented next.

3.1 Fit Logit
3.1.1 Split Data

Find split point in the data.
r<-nrow(cereals)/2
r

## [1] 150
cereals_fit<-cereals[1:r,]
cereals_test<-cereals[-(1:r),]
nrow(cereals_fit)

## [1] 150

3.1.1.1 Means of Samples
means show that only relevant features (X1 to X3) have means higher than 0.
round(sapply(cereals_fit[,-1], mean), 2)

## X1.TF X2.TF X3.TF X4.TF X5.TF X6.TF X7.TF X8.TF X9.TF X10.TF
## 3.86 5.08 2.01 -0.07 0.06 -0.03 -0.02 -0.03 -0.03 0.03
## X1.HB X2.HB X3.HB X4.HB X5.HB X6.HB X7.HB X8.HB X9.HB X10.HB
## 3.49 1.00 4.05 0.00 0.01 -0.02 -0.02 0.08 -0.01 -0.05
## X1.NC X2.NC X3.NC X4.NC X5.NC X6.NC X7.NC X8.NC X9.NC X10.NC
## 1.46 1.07 1.94 -0.02 -0.06 -0.02 -0.01 0.00 0.09 -0.01

Below is a tabulation of the selected alternatives in the train sample.
summ_cereals_fit<-summary(cereals_fit$choice)
summ_cereals_fit

## TF HB NC
## 51 57 42
summ_cereals_test<-summary(cereals_test$choice)

3.1.2 Transform Data into Mlogit Data Object
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library(mlogit)
Cereal_fit <- mlogit.data(cereals_fit, varying = c(2:ncol(cereals_fit)),

shape = "wide", choice = "choice")
Cereal_test <- mlogit.data(cereals_test, varying = c(2:ncol(cereals_test)),

shape = "wide", choice = "choice")

3.1.3 Set up Flexible Formula for Logit

last<-ncol(Cereal_fit)-2
k<-colnames(Cereal_fit)[-1]
k<-k[-1]
k<-k[-last]
factors <- k
factors

## [1] "X1" "X2" "X3" "X4" "X5" "X6" "X7" "X8" "X9" "X10"
X<-as.formula(paste("choice~", paste(factors, collapse="+")))
X

## choice ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10
f1 <- mFormula(X)

3.1.4 Remove Intercept

f0 <- update(f1, .~.-1)

3.1.5 Fit Logit Model

m<-mlogit(f0, data=Cereal_fit, seed = 1)

3.1.6 In-Sample Performance

Make predictions. The logit predictions are in the form of probabilities.
library("caret")
set.seed(1)
logit.pred_in<-fitted(m, outcome = FALSE)
head(logit.pred_in)

## HB NC TF
## 1 0.80802081 0.00895389 0.183025301
## 2 0.15875477 0.71489982 0.126345407
## 3 0.95266582 0.01520610 0.032128083
## 4 0.03575981 0.85312309 0.111117101
## 5 0.36271514 0.01108054 0.626204322
## 6 0.70555287 0.29111293 0.003334203

The column names are used to label the alternatives.
y_hat = colnames(logit.pred_in)[apply(logit.pred_in, 1, which.max)]
head(y_hat)

## [1] "HB" "NC" "HB" "NC" "TF" "HB"
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They are then compared to the observed alternatives from the train sample.
logit_in = confusionMatrix(cereals_fit$choice, as.factor(y_hat))

The accuracy is recorded the generated confusion matrix output.
logit_in[2]

## $table
## Reference
## Prediction HB NC TF
## HB 41 6 10
## NC 9 31 2
## TF 6 3 42
logit_in<-logit_in$overall[1]*100
logit_in

## Accuracy
## 76
logit_in<-logit_in[[1]]
logit_in

## [1] 76

3.1.7 Out-of-Sample Performance

Make predictions
logit.pred_out<-predict(m, newdata=Cereal_test)

3.1.7.1 Data-Check
Specify a decimal format for the predicted probabilities and reformat the predicted probabilities into a
readable format.
specify_decimal <- function(x, k) trimws(format(round(x, k), nsmall=k))
head(specify_decimal(logit.pred_out, 2))

## HB NC TF
## 1 "0.01" "0.62" "0.38"
## 2 "0.02" "0.43" "0.55"
## 3 "0.00" "0.00" "1.00"
## 4 "0.87" "0.11" "0.02"
## 5 "0.04" "0.89" "0.06"
## 6 "0.26" "0.03" "0.71"

Verify predicted probabilities add to 1
head(apply(logit.pred_out, drop=F, 1, sum))

## 1 2 3 4 5 6
## 1 1 1 1 1 1

Record accuracy.
y_hat = colnames(logit.pred_out)[apply(logit.pred_out, 1, which.max)]
head(y_hat)

## [1] "NC" "TF" "TF" "HB" "NC" "TF"
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logit_out_cm = confusionMatrix(as.factor(y_hat), cereals_test$choice)
logit_out<-logit_out_cm$overall[1]*100
logit_out<-logit_out[[1]]

3.1.8 Save Results

logit<-round(cbind(logit_in, logit_out), 0)
logit

## logit_in logit_out
## [1,] 76 78

3.2 Fit Linear Regression
3.2.1 Split Data

find split point in the data and split it.
r<-nrow(cereals.lin)/2
cereals_fit<-cereals.lin[1:r,]
cereals_test<-cereals.lin[-(1:r),]
names(cereals_fit)

## [1] "choice" "X1" "X2" "X3" "X1.TF" "X2.TF" "X3.TF"
## [8] "X4.TF" "X5.TF" "X6.TF" "X7.TF" "X8.TF" "X9.TF" "X10.TF"
## [15] "X1.HB" "X2.HB" "X3.HB" "X4.HB" "X5.HB" "X6.HB" "X7.HB"
## [22] "X8.HB" "X9.HB" "X10.HB" "X1.NC" "X2.NC" "X3.NC" "X4.NC"
## [29] "X5.NC" "X6.NC" "X7.NC" "X8.NC" "X9.NC" "X10.NC"

Test sample includes logit probabilities.

record summary statistics of samples for later
summ_cereals_fit_lin<-summary(cereals_fit$choice)
summ_cereals_test_lin<-summary(cereals_test$choice)

3.2.2 Pre-Process Data

3.2.2.1 Separate Data for Regressions
Data frames are build using the logit probability and features per alternative.
cereals.TF<-cbind(cereals_fit$X1, cereals_fit[(1+4):(5+p-1)])
str(cereals.TF)

## 'data.frame': 150 obs. of 11 variables:
## $ cereals_fit$X1: num 0.0477 0.0122 0.2296 0.4004 0.9462 ...
## $ X1.TF : num 3.62 4.58 4.31 4.51 3.83 ...
## $ X2.TF : num 5.08 5.17 5.35 4.95 4.89 ...
## $ X3.TF : num 1.63 1.72 2.03 2.17 2.31 ...
## $ X4.TF : num 0.7134 -0.9904 -0.8897 -0.0241 0.2489 ...
## $ X5.TF : num 0.147 0.503 0.277 -0.616 -0.308 ...
## $ X6.TF : num -0.3669 -0.0201 -0.0251 -0.1856 -0.3164 ...
## $ X7.TF : num 0.21798 -0.00724 -0.06967 -0.17633 0.16305 ...
## $ X8.TF : num 0.3302 0.4221 -0.6577 -0.0265 0.3437 ...
## $ X9.TF : num 0.2575 0.3673 -0.2138 0.4919 -0.0502 ...
## $ X10.TF : num -0.137 0.266 0.187 0.341 0.394 ...
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cereals.HB<-cbind(cereals_fit$X2, cereals_fit[(5+p-1+1):(5+2*p-1)])
cereals.NC<-cbind(cereals_fit$X3, cereals_fit[(5+2*p-1+1):ncol(cereals_fit)])

Test Data has the same structure as the train data.
cereals.TF.test<-cbind(cereals_test$X1, cereals_test[(1+4):(5+p-1)])
cereals.HB.test<-cbind(cereals_test$X2, cereals_test[(5+p-1+1):(5+2*p-1)])
cereals.NC.test<-cbind(cereals_test$X3, cereals_test[(5+2*p-1+1):ncol(cereals_fit)])

3.2.3 Set up Formulas for 3 Regressions

k<-colnames(cereals.TF[2:ncol(cereals.TF)])
TF<-as.formula(paste("log(cereals.TF[,1])~", paste(k, collapse="+")))
TF

## log(cereals.TF[, 1]) ~ X1.TF + X2.TF + X3.TF + X4.TF + X5.TF +
## X6.TF + X7.TF + X8.TF + X9.TF + X10.TF
k<-colnames(cereals.HB[2:ncol(cereals.HB)])
HB<-as.formula(paste("log(cereals.HB[,1])~", paste(k, collapse="+")))
HB

## log(cereals.HB[, 1]) ~ X1.HB + X2.HB + X3.HB + X4.HB + X5.HB +
## X6.HB + X7.HB + X8.HB + X9.HB + X10.HB
k<-colnames(cereals.NC[2:ncol(cereals.NC)])
NC<-as.formula(paste("log(cereals.NC[,1])~", paste(k, collapse="+")))
NC

## log(cereals.NC[, 1]) ~ X1.NC + X2.NC + X3.NC + X4.NC + X5.NC +
## X6.NC + X7.NC + X8.NC + X9.NC + X10.NC

3.2.3.1 Remove Intercept

form.TF <- update(TF, .~.-1)
form.HB <- update(HB, .~.-1)
form.NC <- update(NC, .~.-1)

3.2.4 Fit Regression Models

ols.TF <- lm(form.TF, data=cereals.TF)
ols.HB <- lm(form.HB, data=cereals.HB)
ols.NC <- lm(form.NC, data=cereals.NC)

3.2.5 In-Sample Predictions

The predictions of the three regressions are compared.
TF<-fitted(ols.TF, outcome = FALSE)
HB<-fitted(ols.HB, outcome = FALSE)
NC<-fitted(ols.NC, outcome = FALSE)
util<-cbind(TF, HB, NC)
head(util, 4)

## TF HB NC
## 1 -2.848340 -2.811533 -4.560369
## 2 -5.846930 -5.872507 -2.778482
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## 3 -5.301662 -2.086851 -4.101773
## 4 -5.686562 -6.390244 -2.695700

The alternative that has the highest utility is chosen.
wahl<-apply(util, 1, function(x) which.max(x))
head(wahl)

## 1 2 3 4 5 6
## 2 3 2 3 1 2

Column numbers serve as indicators for the alternatives.

3.2.6 In-Sample Correct

The predicted choices are compared to the numeric of the observed choices. The comparison is done in a
confusion matrix.
y_hat<-as.numeric(wahl)
cm = table(wahl, cereals_fit$choice)
cm

##
## wahl TF HB NC
## 1 40 7 3
## 2 6 44 9
## 3 5 6 30

Accuracy is calculated
reg_in<-sum(diag(cm))/sum(cm)*100
reg_in

## [1] 76

3.2.7 Out-of-Sample Predictions

Make Predictions.
TF=predict(ols.TF, newdata =cereals.TF.test)
HB=predict(ols.HB, newdata =cereals.HB.test)
NC=predict(ols.NC, newdata =cereals.NC.test)
util<-cbind(TF, HB, NC)

3.2.8 Out-of-Sample Correct

wahl<-apply(util, 1, function(x) which.max(x))
reg_out_cm = table(wahl, cereals_test$choice)
rownames(reg_out_cm)<- alt.names
reg_out<-sum(diag(reg_out_cm))/sum(reg_out_cm)*100

3.2.9 Store Results

lin.reg<-round(cbind(reg_in, reg_out), 0)
lin.reg

## reg_in reg_out
## [1,] 76 71
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3.3 Fit LASSO
LASSO using glmnet package requires coding the y and x variables in separate matrices.

3.3.1 Code train and test samples for lasso.cv

3.3.1.1 Train

Y.train.TF = log(cereals.TF[, 1]) # output variable
str(Y.train.TF)

## num [1:150] -3.0428 -4.4063 -1.4714 -0.9153 -0.0553 ...
X.train.TF = as.matrix(cereals.TF[,2:ncol(cereals.TF)]) # regressors
str(X.train.TF)

## num [1:150, 1:10] 3.62 4.58 4.31 4.51 3.83 ...
## - attr(*, "dimnames")=List of 2
## ..$ : chr [1:150] "1" "2" "3" "4" ...
## ..$ : chr [1:10] "X1.TF" "X2.TF" "X3.TF" "X4.TF" ...
Y.train.HB = log(cereals.HB[, 1]) # output variable
X.train.HB = as.matrix(cereals.HB[,2:ncol(cereals.HB)]) # regressors
Y.train.NC = log(cereals.NC[, 1]) # output variable
X.train.NC = as.matrix(cereals.NC[,2:ncol(cereals.NC)]) # regressors

3.3.1.2 Test

Y.test.TF = log(cereals.TF.test[, 1]) # output variable
X.test.TF = as.matrix(cereals.TF.test[,2:ncol(cereals.TF)]) # regressors
Y.test.HB = log(cereals.HB.test[, 1]) # output variable
X.test.HB = as.matrix(cereals.HB.test[,2:ncol(cereals.HB)]) # regressors
Y.test.NC = log(cereals.NC.test[, 1]) # output variable
X.test.NC = as.matrix(cereals.NC.test[,2:ncol(cereals.NC)]) # regressors

3.3.2 Do Cross-Validation

library(glmnet)
lasso.cv.TF=cv.glmnet(X.train.TF, Y.train.TF, family="gaussian",alpha=1)
lasso.cv.HB=cv.glmnet(X.train.HB, Y.train.HB, family="gaussian",alpha=1)
lasso.cv.NC=cv.glmnet(X.train.NC, Y.train.NC, family="gaussian",alpha=1)

3.3.3 Determine Best Lambda, Fit LASSO, Predict lasso.cv In-Sample

3.3.3.1 TF

bestlam.lasso.cv = lasso.cv.TF$lambda.min
reg.la.TF=glmnet(X.train.TF,Y.train.TF, family="gaussian", alpha=1,

lambda = bestlam.lasso.cv)
TF = predict(reg.la.TF, s= bestlam.lasso.cv, newx=X.train.TF)
str(TF)

## num [1:150, 1] -3.3 -5.6 -4.45 -5.16 -2.76 ...
## - attr(*, "dimnames")=List of 2
## ..$ : chr [1:150] "1" "2" "3" "4" ...
## ..$ : chr "1"
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Utilities result from the prediction.

3.3.3.2 HB

bestlam.lasso.cv = lasso.cv.HB$lambda.min
reg.la.HB=glmnet(X.train.HB,Y.train.HB, family="gaussian", alpha=1,

lambda = bestlam.lasso.cv)
HB = predict(reg.la.HB, s= bestlam.lasso.cv, newx=X.train.HB,

lambda = bestlam.lasso.cv)

3.3.3.3 NC

bestlam.lasso.cv = lasso.cv.NC$lambda.min
reg.la.NC=glmnet(X.train.NC,Y.train.NC, family="gaussian", alpha=1,

lambda = bestlam.lasso.cv)
NC = predict(reg.la.NC, s= bestlam.lasso.cv, newx=X.train.NC)

3.3.4 Post Lasso Coefficients

3.3.4.1 Variable Selection and Liner Model

W <- as.matrix(coef(reg.la.TF))
W

TF

## s0
## (Intercept) -7.96959386
## X1.TF -2.89974525
## X2.TF 2.20885371
## X3.TF 2.28251390
## X4.TF 0.00000000
## X5.TF 0.00000000
## X6.TF 0.00000000
## X7.TF 0.05462683
## X8.TF 0.65283385
## X9.TF 0.00000000
## X10.TF 0.00000000
keep_X <- rownames(W)[W!=0]
keep_X <- keep_X[!keep_X == "(Intercept)"] #remove intercept
keep_X

## [1] "X1.TF" "X2.TF" "X3.TF" "X7.TF" "X8.TF"
x<- X.train.TF[,keep_X]
summ.lasso.TF<-lm(Y.train.TF~x -1)
#stargazer(summ.lasso.TF, type = "latex")

W <- as.matrix(coef(reg.la.HB))
keep_X <- rownames(W)[W!=0] #only keep non-zero coefficients
keep_X <- keep_X[!keep_X == "(Intercept)"] #don't selected intercept
x<- X.train.HB[,keep_X] #only use selected features
summ.lasso.HB<-lm(Y.train.HB~x -1) #remove intercept in new model
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HB

W <- as.matrix(coef(reg.la.NC))
keep_X <- rownames(W)[W!=0]
keep_X <- keep_X[!keep_X == "(Intercept)"]
x<- X.train.NC[,keep_X]
summ.lasso.NC<-lm(Y.train.NC~x -1)

NC

3.3.5 Compare In-Sample Predictions and choose largest utility

util<-cbind(TF, HB, NC)
colnames(util)<-levels
wahl<-apply(util, 1, function(x) which.max(x))

3.3.6 In-Sample Accuracy

cm = table(wahl, cereals_fit$choice)
lasso_in<-sum(diag(cm))/sum(cm)*100

3.3.7 Out-of-Sample Prediction

TF = predict(reg.la.TF, s= bestlam.lasso.cv, newx=X.test.TF)
HB = predict(reg.la.HB, s= bestlam.lasso.cv, newx=X.test.HB)
NC = predict(reg.la.NC, s= bestlam.lasso.cv, newx=X.test.NC)

3.3.8 Compare Out-of-Sample Predictions and choose highest

util<-cbind(TF, HB, NC)
wahl<-apply(util, 1, function(x) which.max(x))

3.3.9 Out-of-Sample Accuracy

lasso_out_cm = table(wahl, cereals_test$choice)
rownames(lasso_out_cm)<-alt.names
lasso_out<-sum(diag(lasso_out_cm))/sum(lasso_out_cm)*100

3.3.10 Save Results

lasso.cv<-round(cbind(lasso_in, lasso_out), 0)
lasso.cv

## lasso_in lasso_out
## [1,] 72 77

3.4 Decision Tree
3.4.1 Split Data

This is the same split as in logit. But hast to be done again because variable names overlap.
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r<-nrow(cereals)/2
cereals_fit<-cereals[1:r,]
cereals_test<-cereals[-(1:r),]

3.4.2 Tuning

The tree is first fit with the default cp of 0.001.
library(rpart)
library(rpart.plot)
tree <- rpart(choice ~ ., data = cereals_fit, method = "class", cp= 0.001)

3.4.3 Prune Tree

The optimal cp displyed below by the printcp() function for the first run does not match the chosen cp in
the code below. The chosen cp level however yields good overal results and remedies the poor classification of
the fourth run, if the minimal cp were to be used.
printcp(tree)

##
## Classification tree:
## rpart(formula = choice ~ ., data = cereals_fit, method = "class",
## cp = 0.001)
##
## Variables actually used in tree construction:
## [1] X1.TF X2.TF X3.HB X3.NC X3.TF X5.HB X7.TF
##
## Root node error: 93/150 = 0.62
##
## n= 150
##
## CP nsplit rel error xerror xstd
## 1 0.193548 0 1.00000 1.06452 0.062384
## 2 0.107527 1 0.80645 0.93548 0.064998
## 3 0.080645 2 0.69892 0.97849 0.064331
## 4 0.053763 4 0.53763 0.92473 0.065134
## 5 0.032258 5 0.48387 0.84946 0.065753
## 6 0.021505 6 0.45161 0.80645 0.065846
## 7 0.001000 7 0.43011 0.83871 0.065794
tree <- rpart(choice ~ ., data = cereals_fit, method = "class", cp= 0.06451613)

3.4.4 In-Sample Tree Fit

Probabilities for each class are predicted
fit.tree<-predict(tree, newdata=cereals_fit)
head(fit.tree, 4)

## TF HB NC
## 1 0.24324324 0.5135135 0.2432432
## 2 0.20000000 0.5600000 0.2400000
## 3 0.20000000 0.5600000 0.2400000
## 4 0.08695652 0.1304348 0.7826087
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Choose alternative that has the maximum utility. Compare to observed choices and calculate accuracy from
confusion matrix.
fit.tree<-apply(fit.tree, 1, function(x) which.max(x))
head(fit.tree)

## 1 2 3 4 5 6
## 2 2 2 3 1 3
cm = table(fit.tree, cereals_fit$choice)
tree_in<-sum(diag(cm))/sum(cm)*100

3.4.5 Out-of-Sample Tree Fit and Save Results

tree.pred=predict(tree, newdata=cereals_test)
fit.tree<-apply(tree.pred, 1, function(x) which.max(x))
tree_out_cm = table(fit.tree, cereals_test$choice)
rownames(tree_out_cm)<-alt.names
tree_out<-sum(diag(tree_out_cm))/sum(tree_out_cm)*100

tree<-round(cbind(tree_in, tree_out), 0)
tree

## tree_in tree_out
## [1,] 67 49

3.5 Random Forest
3.5.1 Manual Tuning (commented out)

library(randomForest)
set.seed(1)
#bag1 = randomForest(choice ~ ., data=cereals_fit, mtry = round(sqrt(p),0),
#ntree=500)
#bag1 = randomForest(choice ~ ., data=cereals_fit, mtry =23, ntree=500,
#importance=TRUE, proximity=TRUE)
#bag1 = randomForest(choice ~ ., data=cereals_fit, importance=TRUE,
#proximity=TRUE)

3.5.2 Automatic Tuning

The caret package divides the train data set randomly into folds and trains model on them, then averages
the obtained error terms. This type of fitting is better than the manual fitting.
library("caret")
tc = trainControl(method = "repeatedcv", number = cvfolds)
bag1 = train(choice ~., data=cereals_fit, method="rf", trControl=tc)

3.5.3 Analyse Fit

If enabled, print(bag1) shows how the parameters were tuned. It is disabled for better clarity and to reduce
space. Please see the provided executable r data file for more details.
#print(bag1)
rf_var_plot <- varImp(bag1, top = 20) #only to be used with bag1 from caret package
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3.5.4 In-Sample Fit

pred.bag1 = predict(bag1, newdata =cereals_fit)
head(pred.bag1) #predictions are in the form of categories

## [1] HB NC HB NC TF HB
## Levels: TF HB NC
cm = table(pred.bag1, cereals_fit$choice)
rf_in<-sum(diag(cm))/sum(cm)*100

3.5.5 Out-of-Sample Fit and Save Results

pred.bag1 = predict(bag1, newdata =cereals_test)
rf_out_cm = table(pred.bag1, cereals_test$choice)
rf_out<-sum(diag(rf_out_cm))/sum(rf_out_cm)*100

rf<-round(cbind(rf_in, rf_out), 0)
rf

## rf_in rf_out
## [1,] 100 63

3.6 Gradient Boosting
3.6.1 Manual tuning

The commented out line shows the manual tuning method with the gbm package. This method was not used
in favor of the automatic tuning.
library("gbm")
set.seed(1)
#boost1=gbm(choice ~ ., data=cereals_fit, distribution= "multinomial")

3.6.2 Automatic Tuning

The automatic tuning is done using the caret package.
tc = trainControl(method = "repeatedcv", number = cvfolds)
garbage <- capture.output(boost1 <- train(choice ~., data=cereals_fit, method="gbm",

trControl=tc))

3.6.3 Analyse Fit

If enabled, boost1 shows how the parameters were tuned. It is disabled for better clarity and to reduce space.
Please see the provided executable r data file for more details.
#boost1
var_imp_gbm<-plot(varImp(boost1))

3.6.4 In-Sample Fit

pred.boost1=predict(boost1, newdata =cereals_fit)
cm = table(pred.boost1, cereals_fit$choice)
boost_in<-sum(diag(cm))/sum(cm)*100
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3.6.5 Out-of-Sample Fit

pred.boost1=predict(boost1, newdata =cereals_test)
boost_out_cm = table(pred.boost1, cereals_test$choice)
rownames(boost_out_cm) <- alt.names
boost_out<-sum(diag(boost_out_cm))/sum(boost_out_cm)*100

3.6.6 Save Results

boost<-round(cbind(boost_in, boost_out), 0)
boost

## boost_in boost_out
## [1,] 88 61

4 Save Estimated Coefficients
##Logit
coef<-c(coefficients(m)[1],

coefficients(m)[2],
coefficients(m)[3])

##Linear Regression
coef.reg<-c(coefficients(ols.TF)[1],

coefficients(ols.TF)[2],
coefficients(ols.TF)[3],
coefficients(ols.HB)[1],
coefficients(ols.HB)[2],
coefficients(ols.HB)[3],
coefficients(ols.NC)[1],
coefficients(ols.NC)[2],
coefficients(ols.NC)[3])

4.1 LASSO

coef.lasso<-c(coefficients(summ.lasso.TF)[1],
coefficients(summ.lasso.TF)[2],
coefficients(summ.lasso.TF)[3],
coefficients(summ.lasso.HB)[1],
coefficients(summ.lasso.HB)[2],
coefficients(summ.lasso.HB)[3],
coefficients(summ.lasso.NC)[1],
coefficients(summ.lasso.NC)[2],
coefficients(summ.lasso.NC)[3])

5 Save Results from Loop

details[[i]]<-cbind(coef)
coeff.logit[[i]]<-m

details1[[i]]<-cbind(logit,lin.reg,lasso.cv,tree,rf,boost)
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details3[[i]]<-cbind(snr, noise)

details4[[i]]<-cbind(sum(rf_in), sum(rf_out))

coeff.reg[[i]] <-cbind(coef.reg)
coeff.reg.TF[[i]] <-ols.TF
coeff.reg.HB[[i]] <-ols.HB
coeff.reg.NC[[i]] <-ols.NC

coeff.lasso[[i]] <- cbind(coef.lasso)
coeff.lasso.TF[[i]] <- summ.lasso.TF
coeff.lasso.HB[[i]] <- summ.lasso.HB
coeff.lasso.NC[[i]] <- summ.lasso.NC

cm.logit[[i]] <- logit_out_cm[2]
cm.reg[[i]] <- reg_out_cm
cm.lasso[[i]] <- lasso_out_cm
cm.tree[[i]] <- tree_out_cm
cm.rf[[i]] <- rf_out_cm
cm.boost[[i]] <- boost_out_cm

rf_plot[[i]] <- rf_var_plot
gbm_plot[[i]] <- var_imp_gbm

summ_fit_sample[[i]] <- summ_cereals_fit
summ_test_sample[[i]] <-summ_cereals_test

summ_fit_lin_sample[[i]] <-summ_cereals_fit_lin
summ_test_lin_sample[[i]] <-summ_cereals_test_lin

} #end Loop

6 Prepare Results Tables
This chunk includes the preparation of the results using various data frames and row and column naming.
The preparation is important for presentation purposes in the paper.
suppressMessages(library(stargazer))
suppressMessages(library(xtable))

6.1 Performance Table

details2<-details1
details2<-unlist(details2, recursive = TRUE, use.names = TRUE)

run1<-round(matrix(details2[1:12], ncol = 2, byrow = TRUE), 0)
run2<-round(matrix(details2[13:24], ncol = 2, byrow = TRUE), 0)
run3<-round(matrix(details2[25:36], ncol =2, byrow = TRUE),0)
run4<-round(matrix(details2[37:48], ncol =2, byrow = TRUE), 0)

names1<-c("in sample", "out of sample")
names2<-c("logit", "lin reg", "lasso.cv", "tree", "random forrest", "boosting")
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colnames(run1)<-names1
rownames(run1)<-names2
colnames(run2)<-names1
rownames(run2)<-names2
colnames(run3)<-names1
rownames(run3)<-names2
colnames(run4)<-names1
rownames(run4)<-names2

run1.table<-xtable(run1, caption = index[1], digits = 0)
run2.table<-xtable(run2, caption = index[2], digits = 0)
run3.table<-xtable(run3, caption = index[3], digits = 0)
run4.table<-xtable(run4, caption = index[4], digits = 0)

6.2 Prepare Coefficients Tables
6.2.1 Logit

coeff<-t(matrix(unlist(details), ncol = 3, byrow = TRUE))
colnames(coeff)<-index
rownames(coeff)<-c("price","quality","popularity")
coeff.table<-xtable(coeff, caption = "Coefficients")

6.2.2 Liner Regression

coeff.reg2<-t(matrix(unlist(coeff.reg), ncol = 9, byrow = TRUE))
colnames(coeff.reg2)<-index
rownames(coeff.reg2)<-c("X1.TF", "X2.TF", "X3.TF", "X1.HB", "X2.HB", "X3.HB",

"X1.NC", "X2.NC", "X3.NC")
coeff.table.reg<-xtable(coeff.reg2, caption = "Coefficients")

6.2.3 LASSO

coef.lasso<-t(matrix(unlist(coeff.lasso), ncol = 9, byrow = TRUE))
colnames(coef.lasso)<-index
rownames(coef.lasso)<-c("X1.TF", "X2.TF", "X3.TF", "X1.HB", "X2.HB", "X3.HB",

"X1.NC", "X2.NC", "X3.NC")
coeff.table.lasso<-xtable(coef.lasso, caption = "Coefficients")

6.3 Signal-to-Noise Table

details.snr<-unlist(details3)
details.snr<-matrix(details.snr, ncol = 2, byrow = TRUE)
colnames(details.snr)<-c("Signal-to-Noise", "Noise")
rownames(details.snr)<-index
snr.table<-xtable(details.snr, camption= "Signal-to-Noise")

7 Show Results
This section presents the code for the results. Only the performance comparision is presented to save space.
The results match the Results Section of the paper. For further details please see the provided r-data file.
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7.1 Signal-to-Noise Ratio

details.snr

## Signal-to-Noise Noise
## p=10 2.236826 1.64465
## p=50 3.017325 1.64465
## p=150 2.425730 1.64465
## p=290 2.836494 1.64465

7.2 Performance Comparison

index

## [1] "p=10" "p=50" "p=150" "p=290"
run1

## in sample out of sample
## logit 76 78
## lin reg 76 71
## lasso.cv 72 77
## tree 67 49
## random forrest 100 63
## boosting 88 61
run2

## in sample out of sample
## logit 77 62
## lin reg 72 45
## lasso.cv 62 54
## tree 58 41
## random forrest 100 45
## boosting 100 45
run3

## in sample out of sample
## logit 100 41
## lin reg 80 33
## lasso.cv 70 65
## tree 69 47
## random forrest 100 51
## boosting 100 49
run4

## in sample out of sample
## logit 100 36
## lin reg 84 29
## lasso.cv 74 64
## tree 65 47
## random forrest 100 50
## boosting 100 47
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7.3 Coefficients
Logit coefficients are listed below. First are the relevant coefficients for all runs listed. Then next output lists
all estimated logit coefficients for the first run.

7.4 Logit

coeff

## p=10 p=50 p=150 p=290
## price -3.096471 -3.354573 -28.90478 -12.353016
## quality 1.851797 1.918786 16.58122 6.582303
## popularity 3.212596 3.314025 31.08082 11.217060

summary(coeff.logit[[1]])

##
## Call:
## mlogit(formula = choice ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 +
## X8 + X9 + X10 - 1, data = Cereal_fit, seed = 1, method = "nr")
##
## Frequencies of alternatives:
## HB NC TF
## 0.38 0.28 0.34
##
## nr method
## 6 iterations, 0h:0m:0s
## g'(-H)^-1g = 0.000249
## successive function values within tolerance limits
##
## Coefficients :
## Estimate Std. Error z-value Pr(>|z|)
## X1 -3.0964715 0.4140316 -7.4788 7.505e-14 ***
## X2 1.8517973 0.2478674 7.4709 7.971e-14 ***
## X3 3.2125959 0.4196564 7.6553 1.932e-14 ***
## X4 -0.0039057 0.3015569 -0.0130 0.9897
## X5 -0.0257784 0.2895766 -0.0890 0.9291
## X6 -0.3328288 0.3096260 -1.0749 0.2824
## X7 0.0014206 0.3040154 0.0047 0.9963
## X8 0.2248430 0.2962448 0.7590 0.4479
## X9 -0.0603981 0.3093601 -0.1952 0.8452
## X10 0.2815895 0.3250167 0.8664 0.3863
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Log-Likelihood: -91.375

7.5 Linear Regression
Linear Regression coefficients are listed. First the relevant, then the estimated coefficients per alternative for
the first run.

coeff.reg2

## p=10 p=50 p=150 p=290
## X1.TF -3.9066881 -4.3611262 -10.056788 -677.756368
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## X2.TF 1.4512183 1.5410204 4.598484 634.968445
## X3.TF 2.1921421 2.9160312 6.152307 -386.862818
## X1.HB -4.3510830 -2.7276638 5.957411 -40.995783
## X2.HB 1.0891153 1.3686861 -8.140303 -49.804010
## X3.HB 2.6882814 1.1111883 -4.574937 43.408298
## X1.NC -4.8601217 -4.5298688 4.287643 -3.286762
## X2.NC 1.4941079 1.0705718 -6.531668 -7.961015
## X3.NC 0.9540236 0.7777074 -10.656929 4.203862

summary(coeff.reg.TF[[1]])

##
## Call:
## lm(formula = form.TF, data = cereals.TF)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.889 -1.379 0.512 1.771 5.318
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## X1.TF -3.90669 0.43701 -8.940 2.06e-15 ***
## X2.TF 1.45122 0.33132 4.380 2.31e-05 ***
## X3.TF 2.19214 0.52916 4.143 5.91e-05 ***
## X4.TF -0.18126 0.55436 -0.327 0.7442
## X5.TF 0.03678 0.48089 0.076 0.9391
## X6.TF 0.06824 0.50473 0.135 0.8926
## X7.TF 0.22404 0.55816 0.401 0.6887
## X8.TF 1.18130 0.55561 2.126 0.0352 *
## X9.TF 0.20141 0.52722 0.382 0.7030
## X10.TF -0.08117 0.58449 -0.139 0.8898
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.911 on 140 degrees of freedom
## Multiple R-squared: 0.6675, Adjusted R-squared: 0.6437
## F-statistic: 28.1 on 10 and 140 DF, p-value: < 2.2e-16
summary(coeff.reg.HB[[1]])

##
## Call:
## lm(formula = form.HB, data = cereals.HB)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.2658 -1.3238 0.3358 1.8578 6.2953
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## X1.HB -4.351083 0.436698 -9.964 < 2e-16 ***
## X2.HB 1.089115 0.547734 1.988 0.0487 *
## X3.HB 2.688281 0.375667 7.156 4.26e-11 ***
## X4.HB -0.025502 0.541557 -0.047 0.9625
## X5.HB 0.461733 0.566486 0.815 0.4164

84



## X6.HB 0.461519 0.552594 0.835 0.4050
## X7.HB 0.334463 0.568390 0.588 0.5572
## X8.HB 0.007566 0.548774 0.014 0.9890
## X9.HB -0.022064 0.563030 -0.039 0.9688
## X10.HB 0.204218 0.618313 0.330 0.7417
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.077 on 140 degrees of freedom
## Multiple R-squared: 0.6443, Adjusted R-squared: 0.6189
## F-statistic: 25.36 on 10 and 140 DF, p-value: < 2.2e-16
summary(coeff.reg.NC[[1]])

##
## Call:
## lm(formula = form.NC, data = cereals.NC)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.0819 -1.7971 0.0966 1.6785 5.6364
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## X1.NC -4.86012 0.45618 -10.654 <2e-16 ***
## X2.NC 1.49411 0.46432 3.218 0.0016 **
## X3.NC 0.95402 0.36686 2.601 0.0103 *
## X4.NC -0.28330 0.57875 -0.490 0.6252
## X5.NC -0.04915 0.52389 -0.094 0.9254
## X6.NC 0.30359 0.51397 0.591 0.5557
## X7.NC 0.54486 0.48957 1.113 0.2676
## X8.NC -0.34925 0.47651 -0.733 0.4648
## X9.NC 0.07644 0.53379 0.143 0.8863
## X10.NC -0.76902 0.51780 -1.485 0.1397
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.803 on 140 degrees of freedom
## Multiple R-squared: 0.7201, Adjusted R-squared: 0.7001
## F-statistic: 36.01 on 10 and 140 DF, p-value: < 2.2e-16

7.6 LASSO
LASSO coefficients are listed. First the relevant, then the estimated coefficients for the first run per alternative.

coef.lasso

## p=10 p=50 p=150 p=290
## X1.TF -3.9012652 -3.8703536 -4.1970812 -3.5156274
## X2.TF 1.4647826 0.7921983 1.4707380 0.7801829
## X3.TF 2.1496418 3.6677306 2.7068046 3.0942549
## X1.HB -4.3478177 -2.7278889 -3.5658226 -3.2054035
## X2.HB 1.1806458 0.8591900 0.9522660 1.6118244
## X3.HB 2.6579528 1.3227454 2.0299172 1.6411899
## X1.NC -4.8652362 -3.9992464 -5.9801915 -4.2136059
## X2.NC 1.4939412 1.0644524 0.9997719 0.8643321
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## X3.NC 0.9650781 1.2361749 2.1236241 0.8196607
summary(coeff.lasso.TF[[1]])

##
## Call:
## lm(formula = Y.train.TF ~ x - 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.699 -1.429 0.451 1.817 5.179
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## xX1.TF -3.9013 0.4266 -9.146 4.95e-16 ***
## xX2.TF 1.4648 0.3213 4.559 1.09e-05 ***
## xX3.TF 2.1496 0.5111 4.206 4.53e-05 ***
## xX7.TF 0.1994 0.5368 0.371 0.7109
## xX8.TF 1.1627 0.5361 2.169 0.0317 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.863 on 145 degrees of freedom
## Multiple R-squared: 0.6668, Adjusted R-squared: 0.6553
## F-statistic: 58.03 on 5 and 145 DF, p-value: < 2.2e-16
summary(coeff.lasso.HB[[1]])

##
## Call:
## lm(formula = Y.train.HB ~ x - 1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -10.6714 -1.3513 0.1692 1.9714 6.3899
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## xX1.HB -4.3478 0.4224 -10.292 < 2e-16 ***
## xX2.HB 1.1806 0.5253 2.248 0.0261 *
## xX3.HB 2.6580 0.3584 7.417 9.04e-12 ***
## xX5.HB 0.4698 0.5531 0.849 0.3971
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.026 on 146 degrees of freedom
## Multiple R-squared: 0.6414, Adjusted R-squared: 0.6315
## F-statistic: 65.27 on 4 and 146 DF, p-value: < 2.2e-16
summary(coeff.lasso.NC[[1]])

##
## Call:
## lm(formula = Y.train.NC ~ x - 1)
##
## Residuals:
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## Min 1Q Median 3Q Max
## -9.1309 -1.7957 0.1941 1.6694 5.7915
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## xX1.NC -4.8652 0.4353 -11.176 < 2e-16 ***
## xX2.NC 1.4939 0.4519 3.306 0.00119 **
## xX3.NC 0.9651 0.3506 2.752 0.00667 **
## xX7.NC 0.5452 0.4739 1.150 0.25192
## xX10.NC -0.8190 0.4958 -1.652 0.10076
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.764 on 145 degrees of freedom
## Multiple R-squared: 0.7181, Adjusted R-squared: 0.7083
## F-statistic: 73.86 on 5 and 145 DF, p-value: < 2.2e-16

7.7 Confusion Matrices
The provided confusion matrices in the paper are shown below. Only the first one is shown for clarity.

cm.logit[[1]]

## $table
## Reference
## Prediction TF HB NC
## TF 40 4 3
## HB 8 38 4
## NC 4 10 39
# cm.logit[[4]]
# cm.reg[[1]]
# cm.reg[[4]]
# cm.lasso[[1]]
# cm.lasso[[4]]
# cm.tree[[1]]
# cm.tree[[4]]
# cm.rf[[1]]
# cm.rf[[4]]
# cm.boost[[1]]
# cm.boost[[4]]

7.8 Preparation of Y-Variable (Observed Choices)

sum.stat.fit<- t(cbind(summ_fit_sample[[1]],
summ_fit_sample[[2]],
summ_fit_sample[[3]],
summ_fit_sample[[4]]))
rownames(sum.stat.fit)<- run.names

sum.stat.test<- t(cbind(summ_test_sample[[1]],
summ_test_sample[[2]],
summ_test_sample[[3]],
summ_test_sample[[4]]))
rownames(sum.stat.test)<- run.names
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sum.stat.fit.lin <- t(cbind(summ_fit_lin_sample[[1]],
summ_fit_lin_sample[[2]],
summ_fit_lin_sample[[3]],
summ_fit_lin_sample[[4]]))
rownames(sum.stat.fit.lin)<- run.names

sum.stat.test.lin <- t(cbind(summ_test_lin_sample[[1]],
summ_test_lin_sample[[2]],
summ_test_lin_sample[[3]],
summ_test_lin_sample[[4]]))
rownames(sum.stat.test.lin)<- run.names

7.8.1 Tabulation of the Y-Variable (Observed Choices)

The y-variable is tabulated in order to determine the distribution of the three classes inside the train and test
samples. The cereals and cereals.lin data frames are the same in regards to the categorical y-variable.

sum.stat.fit

## TF HB NC
## run1 51 57 42
## run2 51 57 42
## run3 49 62 39
## run4 51 57 42

sum.stat.fit.lin

## TF HB NC
## run1 51 57 42
## run2 51 57 42
## run3 49 62 39
## run4 51 57 42

sum.stat.test

## TF HB NC
## run1 52 52 46
## run2 44 52 54
## run3 52 57 41
## run4 48 53 49

sum.stat.test.lin

## TF HB NC
## run1 52 52 46
## run2 44 52 54
## run3 52 57 41
## run4 48 53 49

Therefore they yield the same two train-samples and same two test-samples. This is to show that although
there are two data frames, the data is comparable.
sum.stat.fit==sum.stat.fit.lin

## TF HB NC
## run1 TRUE TRUE TRUE
## run2 TRUE TRUE TRUE
## run3 TRUE TRUE TRUE
## run4 TRUE TRUE TRUE
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sum.stat.test==sum.stat.test.lin

## TF HB NC
## run1 TRUE TRUE TRUE
## run2 TRUE TRUE TRUE
## run3 TRUE TRUE TRUE
## run4 TRUE TRUE TRUE

7.9 ML Variable Importance Plots
7.9.1 Tree Plot

The decison tree split plot is not provided, because the prp() output could not be saved in a data frame.

7.9.2 Random Forest

First the variable importance of the random forest is presented for the first and last run, such as in the paper.
plot(rf_plot[[1]], top = 20)

Importance

X4.NC
X5.HB
X7.NC

X10.TF
X4.TF
X2.NC
X5.NC
X6.NC
X9.TF
X7.HB

X10.HB
X2.HB
X8.TF
X2.TF
X3.NC
X3.HB
X1.HB
X3.TF
X1.NC
X1.TF

20 40 60 80 100

plot(rf_plot[[4]], top = 20)
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Importance

X203.HB
X263.HB
X74.NC
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X134.TF
X174.HB
X158.TF
X104.TF
X120.TF
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X3.HB
X1.HB

X149.NC
X33.NC

X274.NC
X29.TF
X57.TF
X3.NC
X1.TF
X1.NC

20 40 60 80 100

7.9.3 Gradient Boosting

Second the variable importance of the boosted trees is presented for the first and last run, such as seen in the
paper.
gbm_plot[[1]]

Importance

X9.HB
X5.TF
X9.NC
X2.NC
X7.NC
X9.TF
X6.TF
X8.NC
X6.NC
X7.TF
X8.TF

X10.HB
X2.HB
X2.TF
X3.NC
X1.HB
X3.HB
X3.TF
X1.NC
X1.TF

20 40 60 80 100

gbm_plot[[4]]
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Importance
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X140.NC
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X1.HB
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X1.TF
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8 Session Info and Warnings
The first code chunk shows with which version of R the code was ran. Please see r-data file for more info.
sessionInfo()

## R version 3.6.0 (2019-04-26)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
## Running under: Windows 10 x64 (build 18362)
##
## Matrix products: default
##
## locale:
## [1] LC_COLLATE=German_Germany.1252 LC_CTYPE=German_Germany.1252
## [3] LC_MONETARY=German_Germany.1252 LC_NUMERIC=C
## [5] LC_TIME=German_Germany.1252
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] xtable_1.8-4 stargazer_5.2.2 gbm_2.1.5
## [4] randomForest_4.6-14 rpart.plot_3.0.8 rpart_4.1-15
## [7] glmnet_3.0-1 Matrix_1.2-17 caret_6.0-86
## [10] ggplot2_3.2.1 lattice_0.20-38 mlogit_1.0-2
## [13] lmtest_0.9-37 zoo_1.8-5 Formula_1.2-3
## [16] evd_2.3-3 mvtnorm_1.0-11
##
## loaded via a namespace (and not attached):
## [1] Rcpp_1.0.1 lubridate_1.7.8 class_7.3-15
## [4] assertthat_0.2.1 digest_0.6.25 ipred_0.9-9
## [7] foreach_1.4.7 R6_2.4.0 plyr_1.8.4
## [10] stats4_3.6.0 e1071_1.7-3 evaluate_0.13
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## [13] pillar_1.4.4 Rdpack_0.11-1 rlang_0.4.6
## [16] lazyeval_0.2.2 data.table_1.12.2 rmarkdown_2.3
## [19] splines_3.6.0 statmod_1.4.32 gower_0.2.1
## [22] stringr_1.4.0 munsell_0.5.0 compiler_3.6.0
## [25] xfun_0.7 pkgconfig_2.0.2 shape_1.4.4
## [28] htmltools_0.3.6 nnet_7.3-12 tidyselect_0.2.5
## [31] gridExtra_2.3 tibble_3.0.1 prodlim_2019.11.13
## [34] codetools_0.2-16 crayon_1.3.4 dplyr_0.8.5
## [37] withr_2.1.2 MASS_7.3-51.4 recipes_0.1.12
## [40] ModelMetrics_1.2.2.2 grid_3.6.0 nlme_3.1-144
## [43] gtable_0.3.0 lifecycle_0.2.0 magrittr_1.5
## [46] pROC_1.16.2 scales_1.0.0 bibtex_0.4.2.2
## [49] stringi_1.4.3 reshape2_1.4.3 timeDate_3043.102
## [52] ellipsis_0.3.0 vctrs_0.3.0 generics_0.0.2
## [55] lava_1.6.7 iterators_1.0.12 tools_3.6.0
## [58] glue_1.3.1 purrr_0.3.4 survival_2.44-1.1
## [61] yaml_2.2.0 colorspace_1.4-1 gbRd_0.4-11
## [64] knitr_1.23

search() shows the loaded packages
search()

## [1] ".GlobalEnv" "package:xtable" "package:stargazer"
## [4] "package:gbm" "package:randomForest" "package:rpart.plot"
## [7] "package:rpart" "package:glmnet" "package:Matrix"
## [10] "package:caret" "package:ggplot2" "package:lattice"
## [13] "package:mlogit" "package:lmtest" "package:zoo"
## [16] "package:Formula" "package:evd" "package:mvtnorm"
## [19] "package:stats" "package:graphics" "package:grDevices"
## [22] "package:utils" "package:datasets" "package:methods"
## [25] "Autoloads" "package:base"

The warnings have not been presented in order to save space, but could be viewed in the r-data file if
interested.
warnings()
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