
Simulation Study: Hyperparameter Tuning with the
DoubleML Package

Georg Zhelev

November 23, 2021
Working Paper

Abstract

This project creates a programming framework in python to train multi-

ple high-dimensional data sets using multiple parameter tuning strategies

and learners while parallelizing the estimation on high performance com-

puting server. The DoubleML package for causal machine learning is used,

which provides implementation of the double / debiased machine learning

framework of Chernozhukov et al. (2018)[1]. The parametric partially linear

regression (PLR) model is applied and performance measures such as bias,

coverage, mean squared error and standard deviation are calculated for the

di�erent training settings. Learners such as lasso, random forest, gradient

boosting for both regression and classi�cation are applied to estimating the

nuisance functions of the outcome and treatment variables. A combination

of the best learners for each nuisance component is chosen. Results are pre-

sented on per strategy basis and show that the most e�ective strategy is

tuning on folds instead of on the entire sample.

1 Introduction

DoubleML is an R and Python package that provides implementation of the double / debiased machine learn-

ing framework of Chernozhukov et al. (2018)[1]. The package provides functionalities to estimate parameters

in causal models based on machine learning. Details of its functionalities, theoretical backing as well as case

studies are provided by Bach et al. (2021) [2].

1.1 Strategies for Parameter Tuning

The DoubleML package is used to estimate the e�ect of a low-dimensional treatment parameter in the pres-

ence of high-dimensional potential covariates. The package implements an algorithm, which removes con-

founding bias, common in non-randomized observational data and removes regularization bias, resulting

from the implementation of machine learning methods. Further by splitting the sample and averaging the

two resulting estimators removes the inherent over�tting bias when using �exible methods such as random

forest. Since machine learning methods are used for the estimation in the DoubleML package, their param-

eters need to be tuned so they optimally perform. Using the package it is not clear, what tuning strategies

should be applied to make the learners perform best. Since sample splitting is both used for the tuning of

1

https://docs.doubleml.org/stable/index.html

hyper-parameters, but also for the removal of over�tting bias in the double /debiased approach, it is not clear

how they interact with one another.

The splits for parameter tuning and for model �tting are not necessarily identical. For example, the entire

sample could be split into two, perform the tuning on the �rst sample and then pass the obtained parameters

to �t a model on the second sample. The tuning can also be done fold-speci�c, a setting called tune_on_folds

= TRUE pictured in Figure 1. The tuning can also be done on the entire sample. Thus, it is interesting to see

if tuning and cross-�tting on the same folds performs on average better than tuning and cross-�tting on the

entire sample. Tuning on the entire sample and then passing the hyperparameters to the DoubleML can lead

to over�tting.

Figure 1: Sample-Splitting

1.2 Data

The data for the simulation study comes from the Atlantic Causal Inference Conference 2019 Data Challenge

[4]. In this challenge, a great number of data sets have been generated in a way that they mimic distributional

relationships that are found in many economic real data applications. Although the data and the variables

behind it or not de�ned (speci�cally have a meaning), they are well-suited for demonstration purposes.

The object of the 2019 Data Challenge is the ATE parameter. There are low and high dimensional tracks.

Covariates are simulated or drawn from 7 source datasets: healthcare, business, social. Covariates come

from real-world and simulated sources. Outcome and treatment variables are simulated so they allow for

easy main terms models, have poor overlap, a complex functional form and treatment e�ect heterogeneity

and IVs are also present.

Total there are 6400 datasets (32 DGPs per track). Teams analyze data and submit results �les. Co-

variate Data Sources for the High-Dimensional Track come from the UCI Machine Learning Repository []

https://archive.ics.uci.edu/ml/index.php, Columbia University [?] http://www.stat.columbia.edu/ gelman/ar-

m/examples/ and from simulations [] ACIC 2019 Presentation. From the 3,200 high-dimensional data sets

over 32 DGPs, 1,600 data sets over 16 DGPs have been pre-processed for the project. These are the data sets

which have a continuous outcome variable and a binary treatment. Each DGP has 100 data sets generated

from it. Each data set has 1000 observations over 202 variables, of which, one is the outcome variable Y , and

one the treatment variable D and a set of 200 potential covariates X . Since the data was simulated, it is also

provided which data set belongs to which DGP and the true average treatment e�ect ATE is also provided.

2

1.3 Model

The inference problem is to determine the causal e�ect of the binary variable D on the outcome variable Y ,

while controlling for potential covariates X . There are two causal models available in the DoubleMLData

object that can be used to estimate the ATE. First, the partially linear regression model (PLR) assumes that

the treatment e�ect is additive and linear which implies that it does not vary across individuals. Hence the

estimated coe�cient is the average treatment e�ect ATE. Second, the interactive regression model (IRM) is

a more �exible model, because it does not impose functional form restrictions on the underlying regression

relationships, for example, linearity or additivity as in the PLR. This means that the model hosts heteroge-

neous treatment e�ects, i.e., account for variation in the e�ect across observations. In this project the PLR

model is used in the estimation. An implementation with a non-parametric IRM is also planned in the future.

Both models similarly require two learners for estimating the two nuisance parameters: the e�ect of the

covariates on the treatment and the e�ect of the covariates on the outcome. First, the e�ect of the covariates

on the treatment is estimated by m0(xi) as

D = m0(xi) + U, E[U |X,D] = 0.

This equation keeps track of confounding. Second, the e�ect of the covariates on the outcome is estimated

by g0(xi) as

Y = Dθ + g0(xi) + V, E[V |X] = 0,

where Y is the outcome variable andD is the policy treatment variable of interest. VectorX = (X1, ..., Xp)

consists of a high-dimensional vector of controls also referred to as potential covariates. The estimation

is a two-stage process. First the e�ect of X is partialed out from D on an auxiliary sample and the an an

estimate of Y is obtained in the second stage on the main sample. Therefore there are two nuisance function

to estimate m0(xi) and g0(xi), also referred to ml-m and ml-g in later parts of the paper.

1.4 Method

Di�erent learners are tried for the estimation of the two nuisance functions. Since there are two nuisance

functions to estimate m0(xi) and g0(xi), the second one is always estimated with a regression learner, be-

cause the estimated outcome variable is continuous. The �rst one is estimated with a varying regression or

classi�cation learner, because the estimated treatment variable is binary. The learners lasso with cross vali-

dation, random forest and extreme gradient boosting are implemented. Later a best learner, which can result

from any combination of the nuisance learners is chosen based on the lowest tuning residual. The perfor-

mance of the tuning strategies as well as learners is evaluated by looking at tuning residuals, bias, con�dence

interval coverage and mean squared error. The goal is to run a large sample of data sets to determine, which

tuning strategy and learner performs best on the 16 data generating processes of the high-dimensional fea-

tures. Because of the large number of data sets the simulation is run on a high-performance-computing

(HPC) server. Since data is simulated and the true ATE is known, this enables a comparing performance

across tuning strategies and learners by looking at metrics such as bias, mean squared error (MSE), coverage

3

and standard deviation of the MSE. The next section describes the structure of the estimation procedure,

which includes data loading, implementation of tuning strategies, learners used for estimation, tuning-grids

with hyperparameters, training, choice of best learner and performance metrics. The third section covers

results per tuning strategy and per learner. The conclusion section mentions areas of further work and

improvements to the current python-code.

2 Estimation Procedure

The structure of the estimation procedure and how it proceeds to estimate ATE coe�cients is described

next. The procedure takes data that has already been simulated, therefore simulates no new data itself. Its

components are

• data extraction and loading,

• set up of tuning grids,

• implementation of six tuning strategies,

• saving of results and tuned-parameters,

• compilation of results in a single data-�le,

• choice of best learner, and

• calculation of performance statistics and visualizations.

The code can be applied to one or multiple data sets depending on computing capacity. The current version

allows for the processing of any of the 1,600 high-dimensional data sets of the 2019 ACIC Challenge.

2.1 Data Loading

The data loading procedure allows for the programmatic extraction of data sets based on: DGP-id, manual

user-selection of data sets or a random selection of n data sets. The procedure assumes a downloaded copy

of the zip �le with the high-dimensional data sets. Due to the large size of the data sets it is preferable to

save data sets in a di�erent repository as the code-repository in order to allow for version control separated

from data-saving. A meta �le has been prepared which covers all 1,600 high-dimensional data sets with meta

statistics such as: data-set-id, DGpid and trueATE. This �le is used to determine which data sets are extracted

and loaded and to refer to the true ATE to evaluate performance.

2.2 Training

The six tuning strategies listed in Table 1 consider: tuning on folds, tuning on the whole sample, no tuning

and tuning on a hold-out sample with 70%, 50%, and 30% of the data being used exclusively for parameter

tuning.

4

Table 1: Tuning Strategies

Strategy Details
Tuning on folds tune parameters and cross-�t on same folds
Global tune on entire data sample
none no tuning, empty grids
Hold-out 30 tune on 70% of data sample
Hold-out 50 tune on 50% of data sample
Hold-out 70 tune on 30% of data sample

First, tuning on folds, will split the sample into the folds that are also used for cross-�tting. This procedure

is computationally more intense than the others. Second, tuning on the entire sample, splits the data into

K-folds, which are then used for the parameter tuning. The cross-�tting is performed independently from

the tuning. Third, no tuning is used, which will probably perform the least, because there is no one-size-�ts-

all parametrization. No tuning acts as a helpful benchmark to illustrate the need to tune parameters. The

fourth strategy is cross-�tting on a hold-out sample by splitting the data set into two parts - �rst used for the

cross-�tting part and the second for parameter search. Di�erent sample splits 30%, 50% and 70% are used for

parameter tuning. Each tuning strategy sets up a new doubleml.DoubleMLData object where the outcome

features and treatment variables are de�ned. A PLR model is set up using two learners for each nuisance

component and the following settings:

Table 2: DoubleML-Settings

Number of folds 5

Repetition 1

Score function partialling out

dml algorithm dml2

signi�cance level 95%

Only by the hold-out tuning strategy the data sample is split into two, out of which two doubleml.DoubleMLData

result, one of which is used for parameter tuning and the other for model �tting. There are two nuisance

components to estimate m0(xi) and g0(xi) in the PLR model: the e�ect of the covariates on the treatment

and the e�ect of the covariates on the outcome. Because the treatment nuisance component is binary either

a regression or classi�cation can be used. The nuisance component of the outcome in turn is only estimated

with a regression, because its value is continuous. This allows for a combination of regression only and a

mixture of regression and classi�cation learners. Since lasso, random forest and extreme gradient boosting

are the learners of choice, considering their combinations increases the number of learners to six as shown

in Table 3.

Table 3: Learners

Learner ml-m ml-g
lasso-reg lasso regressor lasso regressor
lasso-class lasso regressor logistic regression

w/ Lasso penalty
rf-reg rf regressor rf regressor
rf-class rf regressor rf classi�er
xgb-reg xgb regressor xgb regressor
xgb-class xgb regressor xgb classi�er

5

2.3 Tuning-Grids

Lasso’s tuning grid, where regression is used to estimate both nuisance components, has a cross-validation

(CV) setting of �ve folds and 2000 iterations. The optimal alpha parameter is chosen automatically through

CV. The scoring method used to evaluate the predictions is set to negative mean squared error, which

due to the scikit-learn’s randomized search documentation is the appropriate scoring method to evaluate

a regression-learner. The absolute value of this scoring method is taken. The tuning grid for the lasso

regressor is otherwise empty. In the case of the lasso tuning strategy where no tuning is implemented,

sklearn.linear-model.Lasso is used instead of sklearn.linear-model.LassoCV. This is done to avoid

any tuning whatsoever. Lasso’s tuning grid, where classi�cation is used to estimate the nuisance component

of the treatment is based on logistic regression with �ve folds of cross-validation and 2000 iterations. The

tuning grid allows for a liblinear, lbfs, newton-cg, sag and saga solvers with a penalty type ranging between

l1 and l2. Sklearn’s linear-model.LogisticRegression uses the inverse of regularization strength as the

regularization parameter C. The grid starts from the value C = 0.0001 and moves to the value C = 1 in 10

spaced evenly steps on the log scale. The scoring method used to evaluate the predictions, based on tuning

parameters is set to accuracy. The tuning parameters are shown in Table 4

The random forest regressors and classi�ers use a more sophisticated grid, which varies the depth, maxi-

mum numbers of features, minimum samples per leaf, minimum samples per split as well as the number of

estimators. By max features "auto" are the max features set to the square root of the length of the features

vector. The scoring method used to evaluate the predictions is set to negative mean squared error or

accuracy respectively. For example the parameters of the ml-g learner are show in Table 5. Extreme gra-

dient boosting uses the xgb-regressor and xgb-classifier provided by the xgboost. The regressor uses

"squared error" while the classi�er "binary: logistic" as objective with an evaluation metric "log-loss". The

tuning grid varies the size of estimators, the learning rate, eta, gamma, max depth of the tree, as well as

subsample and colsample by level as seen in Table 6. The scoring method is varied between negative mean

squared error in the case of regression and accuracy in the case of classi�cation.

6

Table 4: Lasso-Grid ml-g

Solver liblinear
Penalty l1, l2

Cs log(0.0001 - 1)
Solver lbfgs, newton-cg, sag

Penalty l2
Cs log(0.0001 - 1)

Solver saga
Penalty l1, l2

Cs log(0.0001 - 1)

Table 5: Random Forest Grid Table

max-depth [8, 10, 12, 15]
max-features [’auto’, ’sqrt’]

min-samples-leaf [1, 2, 4, 5]
min-samples-split [4, 5, 6, 10]

n-estimators [100, 200, 300,]

Table 6: XGBoost Grid Table

n-estimators range between 10-80 step by 10
learning-rate 0.001, 0.010, 0.100, 0.500

eta 0.01, 0.1, 0.2, 0,5
gamma 0, 0.5, 2, 10

max-depth range between 5-16 step by 2
subsample 0.1 to 1 step by 0.01

colsample-bylevel 0.1 to 1 step by 0.01

Table 7: Parameter Search Settings

Type of Search randomized search
cross-validation folds 3

search iterations 10

To tune the learners based on the grids, DoubleML’s tuning method .tune is applied, which in the case of

the python package is based on scikit-learn. Parameter search is done using randomized search. Param-

eter search on the same folds as in the cross-�tting is applied in the tune-on-folds strategy. For all strategies

the number of cross-validation folds is set to 3, number of search iterations is set to 10. The learners are

tuned using the tuning grids described above. In the case of the baseline strategy no-tuning empty grids

for all learners are used. In order to avoid an optimum alpha value for the lasso regression in the no-tuning

option, Lasso with cross-validation is used. The resulting tuning parameters are saved so a model can later

be �t, without having to repeat parameter search. Tuning residuals, estimated coe�cients, con�dence in-

tervals and standard errors are recorded into a results table indicated with the respective learner-strategy

combination.

2.4 Best Learner

After data-sets walk through the training process using the di�erent tuning strategies and learners, the

collected results are compiled. In the post-compile.py module the results are combined in a single results

table and the best-learner.py module is executed. Since there are six learners trained per tuning strategy

and 6 tuning strategies, the results of a single data-set are 36 estimations of the average treatment e�ect.

From the 36 the best learner-strategy combination is chosen, one for each data set. Similar to the training

process, the best-learner.py module creates a new DoubleMLData and a doubleml.DoubleMLPLR object.

The two best learners for the nuisance components given the lowest tuning-residual are chosen. An issue

arises when learners with the minimal tuning-residuals come from di�erent tuning strategies. Since the

ml-g tuning-residual is always bigger than the ml-m tuning-residual, a range of 1.3 to 1.9 compared to 0.2

to 0.6, its reduction will cause the most improvement in the estimation. Therefore the ml-g learner with

the lowest tuning-residual is chosen �rst. Because this low tuning-residual has been achieved as part of a

speci�c tuning-strategy, the best learner of the second nuisance component will be the minimum tuning-

7

residual for that same tuning strategy. Therefore choose the strategy, which minimizes the larger tuning-

residual and adopt the second learner given that strategy. The learner combination is chosen to be the best

learner. It could be for example a combination of lasso regression for the outcome component and random

forest classi�cation for the binary nuisance component. Then a new PLR object is �t. This time instead of

conducting parameter search, the saved parameters of the chosen learner are called. The model is then �tted

and results are appended adding an additional 37th best-result to the data table for the data set in question.

This number is made up of 6 learners times 6 tuning strategies plus one best learner. In Figure 2 is a �ow-chart

that visualizes the training process.

Figure 2: Files Flow-Chart

2.5 Parallelization

By default the PLR model �ts all six learners consecutively. This leads to long computational times for

parameter search. Parallelization of the model tuning and training at the strategy level using job arrays on

the Hummer Cluster at the University of Hamburg has been implemented to solve this problem.

8

2.6 HPC File Directory

2.7 Compilation of Results

In addition to choosing the best learner the post-compile.py module compiles the results into a single

csv �le. The module is manually executed by the user after the data sets have been trained. Since data

sets in the tens and hundreds are trained it is smart to execute this module on the server. Individual �tted

results per learner-strategy as well as tuned-parameters need to be available in the folder structure in order

to be included in the �nal results-table.csv. The csv �le indicates the used learner, estimated coe�cient,

con�dence interval, standard error of estimate, true coe�cient, coverage of true coe�cient, squared error

from true coe�cient, bias, data set name and DGP-id, tuning strategy, type of score, dml-algoritm, number

of observations and features, tuning residuals, and nuisance component scores. A sample of results for the

lasso-classi�cation learner for three tuning-strategies is shown in Table 8.

Table 8: CSV File Results-Format

Measure Result Result Result
coverage True True True
learner lasso_class lasso_class lasso_class
coef 0.872 0.816 0.784
ci_lower 0.736 0.582 0.597
ci_upper 1.004 1.048 0.971
std_err 0.068 0.119 0.095
true_ATE 0.8 0.8 0.8
Bias 0.070 0.016 0.016
strategy _global _manual_30 _manual_50
id high924 high924 high924
n 1000 1000 1000
p 200 200 200
n_folds 5 5 5
n_rep 1 1 1
score partialling out partialling out partialling out
dml_procedure dml2 dml2 dml2
ml_g 1.3103 1.3683 1.4671
ml_m 0.5990 0.5687 0.5360
ml_total 1.909254 1.937 2.003037
msr_ml_g mean_sqrd_err mean_sqrd_err mean_sqrd_err
msr_ml_m accuracy accuracy accuracy
sqr_err 0.0049 0.0002 0.000253
dgp_id 2 2 2

The resulting results-table.csv can be loaded and evaluated separately from the training and compilation of

results.

2.8 Performance Metrics

There are di�erent ways of evaluating the results. Below is an attempt to imitate the performance evaluation

conducted by the ACIC 2019 Challenge organizers. The analyse.py module calculates rMSE, bias, coverage

and standard deviation of the rMSE as per the ACIC 2019 Challenge presentation [4] on page 7. For example

rMSE is calculated according to the ACIC Data Challenge 2019 presentation as

9

rMSE = 1
16

16∑
n=1

MSEm,i

rMSEoracle,i
. (2.1)

Relative mean squared error (rMSE) is calculated for each method (learner) m and dgp-id i. This in turn is

divided by an rMSEoracle for each method and for each dgp-id. The reasoning is that the relative rMSE-

oracle should be zero, since the true ATE is known in the simulation. Because however one can not divide

by 0 the rMSEoracle should be a little larger than zero. Since the oracle values are not available on the

challenge website nor after contacting the organizers, one can not score their submission to the challenge.

Therefore certain values for oracle rMSE, bias and sd were assumed in order to allow for an evaluation of the

results. These values are listed in table 9. The assumed oracle values tend to be lower/better than the results

values, which creates a ratio bigger than 1. For example in the presentation of the ACIC 2019 Challenge [4]

on page 8 the best achievable mean relative rMSE is 1. Any value bigger than one indicates that the value

of the numerator is bigger than the value in the denominator. This makes sense, because the estimation will

never be as good as the oracle estimate. Therefore the values of the calculated rMSEs are above 1 in this

project. The closer the value to 1, the better the estimation. This also applies to bias. Only coverage and sd

are not divided by an oracle metric, but are averaged.

Table 9: Assumed Oracle Metric

Metric Assumed
rMSE 0.6
Bias 0.1
SD averaged over GDP-id
Coverage averaged over GDP-id

The squared error of each learner strategy combination is calculated according to the formula SE =

(Ytrue− Ŷi)2,. Then the mean squared error is calculated over dgp id within the same learners and strategies

MSE = 1
16

∑16
i=1 SE. Then the rMSE is calculated by dividing by the oracle MSE for each learner/strategy

combination. Coverage is a boolean value which results from the condition if the true ATE is between the

lower and upper con�dence interval value ˆYloweri > Ytrue < ˆYupperi. Bias is the absolute di�erence between

the true and estimated ATE |Ytrue−Ŷi|. Standard deviation of the mean squared error isσ = 2

√∑
(SEi− ¯SE)2

n−1 ,

with ¯SE representing the mean SE and i the learner strategy combination. Because there are six learners

times six strategies, 36 results are obtained for each of the four metrics. The best learner is evaluated in a

separate analysis. The 36 results are then populated into a dictionary of results. The scores are built according

to the formula above or in the case of coverage and sd averages are taken.

2.9 Composite rank scores

The goal of this project is to determine di�erences between tuning strategies. Therefore the results are �rst

sliced by strategy. Each strategy has its own results with the six learners. Subsequently the results of each

strategy are sliced by learner and by dgp-id and the performance metrics rMSE, coverage, bias and standard

deviation of the MSE are calculated. After division by the oracle metric, averages are taken over the 16 dgp-

ids such as in equation 2.1. Composite rank scores are built to rank strategies. The range of the rank scores

are between -16 and 16. One point is received for 1st place, 1/2 point for 2nd place, -1 point for last place and

10

-1/2 for next-to-last place. This allows for ranking between strategies for speci�c learners or metrics. For

example in table 10 left, the averaged over DGP-id metrics from the lasso classi�cation learner are shown

for each strategy. The scores in the right table re�ect these results. Only the rMSE and Bias have been

scored, according to the scheme mentioned. The con�dence interval and SD are the same as in the right

table. To determine the SD of the rMSE, the SE of each dgp-id is used in the sample, therefore only a �nal

rank is possible. The con�dence interval is di�cult to rank within gdp-id and then to sum up such as per 2.1,

because there are ties in the ranking, which prevent the scoring. Therefore averaging was used. The rMSE

and Bias allow for scoring at on the dgp-id level and for summing up over all dgp-ids. For example in 10 the

global strategy has 7 points, which means that its rMSE was 7 times the lowest rMSE from all strategies.

Table 10: Composite Scores Example

(a) Lasso Classi�cation Metrics

rMSE 95% CI Bias SD
_global 2.43 0.71 4.09 1.51
_none 15.83 0.41 11.78 8.13
_manual_50 3.61 0.75 5.12 2.37
_manual_30 11.61 0.73 8.64 7.26
_on_folds 2.55 0.71 4.26 1.55
_manual_70 4.37 0.69 5.55 2.59

(b) Lasso Classi�cation Scores and Averages

rMSE 95% CI Bias SD
_global 7.0 0.71 8.0 1.51
_none -8.0 0.41 -7.5 8.13
_manual_50 -0.5 0.75 -0.5 2.37
_manual_30 -7.0 0.73 -8.0 7.26
_on_folds 8.5 0.71 8.5 1.55
_manual_70 0.0 0.69 -0.5 2.59

3 Results

The results show in the results section are for n=207 processed data-sets from all 16 DGPs. Due to luck of the

drawn some DGPs have more data sets selected than others. As the sample increases however this variation

disappears.

• Data Sets evaluated: 207

• run-time: 4.5 hours

• Strategies evaluated: 6

• Learners evaluated: 6

• DGPs evaluated: 16 (binary treatment/continuous outcome)

• separate Best-Learner Analysis

3.1 Average Metrics over 16 DGP-ids

The top right of Table 11 shows the averaged over DGP-id metrics for the lasso regression learner. One

can observe that the global and on-folds strategies have the lowest rMSE, bias and standard deviation of the

rMSE. The hold out strategy 50 and 30 have the highest con�dence interval coverage 84%. The reason for

the same performance by the lasso regression learner for global and on folds tuning strategies is due to the

lack of dml-induced-tuning of the lasso learner. This learner conducts its own CV tuning internally to �nd

the best penalty parameter. Due to the implemented random seed for replication, the training yields the

11

same results for both strategies. This phenomenon is only present by lasso regression. All other methods

have tuning grids, which due to the dml-internal-tuning, result in di�erent metrics per strategy. The high

granularity of the data in the tables makes in di�cult to picture, which strategies perform well, therefore in

the next section the scores and averages are graphed.

Table 11: Average Metrics over 16 DGP-ids

(a) Lasso Reg

rMSE 95% CI Bias SD
_global 1.97 0.78 3.64 1.24
_none 12.14 0.40 9.72 6.51
_manual_50 3.03 0.84 4.53 2.02
_manual_30 5.49 0.84 6.11 3.36
_on_folds 1.97 0.78 3.64 1.24
_manual_70 2.44 0.83 4.02 1.58

(b) Lasso Class

rMSE 95% CI Bias SD
_global 2.43 0.71 4.09 1.51
_none 15.83 0.41 11.78 8.13
_manual_50 3.61 0.75 5.12 2.37
_manual_30 11.61 0.73 8.64 7.26
_on_folds 2.55 0.71 4.26 1.55
_manual_70 4.37 0.69 5.55 2.59

(c) Rf Reg

rMSE 95% CI Bias SD
_global 4.96 0.63 7.26 2.00
_none 5.18 0.62 7.45 2.20
_manual_50 7.67 0.68 8.71 3.25
_manual_30 9.48 0.73 9.86 3.94
_on_folds 4.95 0.63 7.32 1.97
_manual_70 5.75 0.67 7.62 2.46

(d) RF Class

rMSE 95% CI Bias SD
_global 4.09 0.60 6.93 1.55
_none 4.23 0.63 6.99 1.68
_manual_50 6.93 0.67 8.35 2.97
_manual_30 10.18 0.71 10.22 4.19
_on_folds 4.13 0.60 6.92 1.59
_manual_70 5.10 0.68 7.22 2.15

(e) Xgb Reg

rMSE 95% CI Bias SD
_global 5.07 0.49 7.78 2.01
_none 11.87 0.44 10.11 5.97
_manual_50 5.51 0.69 7.48 2.79
_manual_30 12.90 0.72 11.01 6.00
_on_folds 5.72 0.52 8.12 2.18
_manual_70 9.45 0.56 10.37 3.47

(f) Xgb Class

rMSE 95% CI Bias SD
_global 7.57 0.42 9.35 3.07
_none 21.15 0.37 13.84 10.30
_manual_50 9.29 0.57 9.01 6.11
_manual_30 12.71 0.60 11.32 5.98
_on_folds 6.65 0.45 8.87 2.88
_manual_70 15.21 0.41 13.03 7.97

3.2 Graphics of Scores and Averages

The scoring of the learners hinges on the idea that the best learners earn the most points. Bias and rMSE

are easy to score, however coverage is di�cult to rank into 6 clear positions, because of ties in the ranking.

Therefore coverage averages instead of scores are pictured in the graphics below. Similarly the standard

deviation of the rMSE is averaged over the 16 DGP-ids, because there due to sampling there is no score per

dgp-id. Therefore only a single SD score results. Because of averaging coverage and SD leads to a single

vector it makes more sense to simply show the averages in order to show the relative distance between the

strategies. Therefore coverage and SD are in terms of averages instead of scores.

3.2.1 Lasso

In �gure 3 the composite scores and averages for the lasso regression method are expressed. One can see that

the global and on folds strategies have the best rMSE scores over all data generating processes. Strategies

such as manual-70, manual-50 and manual-30 perform less well. Because the model is tuned on 70% of the

12

data by manual-70, this strategy performs better than strategies where the model is �t on 50 and 30%. The

no-tuning strategy performs as expected the worst. By coverage the hold out strategies show better coverage

than the global and on folds tuning. Especially the manual-30 strategy, which implies tuning on 70% of the

sample seems to have the best coverage over all DGPs. The manual-30 strategy which only tunes on 70%

of the sample performs better than the global and on folds tuning strategies. The SD graph is made up of

averages therefore the lowest is the best.

Figure 3: Lasso Regressor Treatment

In �gure 4 are the results for the lasso classi�cation learner. One can observe that on folds and global

strategies have the best rMSE, bias and lowest SD. Coverage is consistent with lasso regression results above

higher for two hold out strategies. Because the hold out strategies use less data to �t a model than on folds

and global strategies, they also tend to perform worse.

13

Figure 4: Lasso Classi�er Treatment

3.2.2 Random Forest

In �gure 5 are the results for the random forest regression for both nuisance components. It is observed that

the no-tuning strategy tends to have the lowest rMSE and Bias. Although the random forest was tuned on a

single data set, where there were clear improvements from a tuning grid, it seems that over multiple data sets

the default settings seem to yield better results. The global and on folds strategies seem to lower the standard

deviation the most. Coverage similarly to the other learners is especially high for hold-out strategies. This is

begining to look like a pattern. The results are consistent with the random forest classi�er treatment, which

is not shown.

14

Figure 5: Random Forest Regressor Treatment

3.2.3 Extreme Gradient Boosting

The extreme gradient boosting scores in �gure 6 show that the on folds and hold-out-50 strategies tend to

provide the lowest rMSE and bias. The none strategy is not last in the performance for these two metrics,

wich may also signify that a larger more robust tuning grid is necessery. The random forest sufured from the

same issue. Similarly to the other learners the hold out strategies provide the best coverage and the results

for the xgb classi�er are consistent with those of the regressor.

15

Figure 6: Extreme Gradient Boosting Regression Composite Scores

3.3 Results-Summary

The xgb learners seem to be tuned better than the random forest learners, because they don’t show the no-

tuning strategy as the best strategy. When creating the tuning grid for the random forest it was speci�cally

tested on a single data generating process and for that DGP it outperformed the no-tuning strategy, however

when including the remaining 15 DGPs in the estimation, it shows the the tuning-grid is clearly not robust

enough to outperform the default settings. Looking at lasso classi�cation on-folds and global strategies seem

to perform best in estimating the bias of the ATE, rMSE and SD of rMSE, but have lower coverage rates than

the hold-out-strategies. The lasso results are di�cult to rank and score because there are two strategies that

score exactly the same. This is an exception, which is due to the lack of a tuning grid. When tuning grid is

lacking the dml-tuning does not function. Combined with the provided random seed, this yields the same

result for the lasso regressor global and on folds tuning strategies.

3.4 Best Learner Analysis

Because of the granularity of the results and the inability to average over learners or over metrics a best

learner analysis was conducted. This analysis covers only the selected best learner and its performance over

the tuning strategies. It should give clear results, which the best tuning strategy is, because it is only one

learner instead of six. The results are shown for each metric: bias, MSE, coverage and SD with averaging

within (over observations) and over the 16 GDP-ids. The best learner is chosen based on the tuning residual

that results after the parameter search is �nished. The metrics are calculated using the squared error, com-

puted with the help of the true-ATE. The true-ATE is provided by the challenge organizers, since the data is

simulated.

16

The results of the best learner are reduced, because there are dgp-ids the ATEs of which are not e�ciently

estimated during the training. For example DGP-id 12 and 14 have poor estimates of rMSE as shown in table

12. By these two dgp-ids big squared errors were observed, which a�ect averaging over dgp-ids and o�set

strategy averages to the point that one bad estimate can make an otherwise consistent strategy fall behind.

These aberrations are consistent across the four metrics. As a result a good comparison for those DGP-ids

can not be achieved. Therefore the estimates of data sets that came from these two dgp-ids where removed.

The analyzed data sets per DGP-id are shown in table 13. Because of the random draws some DGP-ids have

more chosen that sets than others. The best learner is chosen from a strategy/learner combination. For

example speci�cally poor performing strategies such as the no-tuning strategy is chosen the least. Since

not all strategies have best learners chosen from them, there were missing values such as seen in table 14.

Missing values did not a�ect averages adversely. The results of the best learner analysis are shown in table

15. The on folds strategy has the lowest rMSE, highest coverage, lowest bias and lowest standard deviation.

The results from table 15 have been graphed in �gure 7. Due to the detail view the none strategy is not to

be seen in the graphics, because its results are not near the other strategies. The graphics show that the on

folds strategy is the best tuning strategy by a small margin.

dgp_id rMSEavg

1 0.022
2 0.009
3 0.035
4 0.005
5 0.041
6 0.120
7 0.009
8 0.011
9 0.078
10 0.078
11 0.085
12 2.689
13 0.002
14 12.128
15 0.004
16 0.001

Table 12: rMSE Average per DGP-id

dgp_id
7 20
15 17
1 15
6 14
11 14
13 14
2 13
4 13
8 13
3 11
9 11
10 11
5 8
16 8

Table 13: Data Sets per DGP-id Counts

Strategy Missing
_global 0
_none 12
_manual_50 5
_manual_30 2
_on_folds 0
_manual_70 5

Table 14: Missing Strategies

MSE 95% CI Bias SD
_global 0.041 0.708 0.139 0.087
_none 0.146 0.000 0.315 0.157
_manual_50 0.025 0.704 0.106 0.046
_manual_30 0.027 0.708 0.128 0.037
_on_folds 0.019 0.815 0.107 0.028
_manual_70 0.053 0.811 0.157 0.151

Table 15: Best Learner Results

17

Figure 7: Best Learner Results

4 Conclusion

4.1 Results and Discussion

Looking at each learner separately the results tend to vary, because each learner has been tuned to a di�erent

degree. Nevertheless the best performing learner from the six learners tends to be the lasso regression.

Because of the tuning grid of the random random forest is not robust for all DGPs, it is best not to consider

its results. The extreme gradient boosting shows better signs of being tuned than the random forest, but not

enough because the no-tuning strategy still performs moderate. The best learner analysis, where according to

the lowest tuning residual the learners for the estimation of nuisance components are chosen, shows a clear

advantage of the on folds tuning strategy. The results of the best learner had to be reduced, by removing

the data set estimates of two DGPs, because of their poor estimation. In this version of the estimation,

the partially linear regression (PLR) model is used. It could be the case that a non-parametric estimation

procedure performs better than the chosen PLR model. For example the more �exible interactive regression

model (IRM) contained in the DoubleML package. Further changes to the code would allow the training of

low-dimensional data sets in addition to the high-dimensional ones. Another area of concern are the equal

estimation results for the global and on-folds tuning strategies. Because of the lack of grid for LassoCV no

DoubleML-internal tuning takes place. Combined with the implemented seed, this leads to equal rMSE, bias,

coverage and sd results for the lasso regression only. However the estimation procedure is parallelized using

job arrays and can be used to estimate more data sets on a high performance computing server with multiple

processor-nodes. How to use this procedure to train further data sets is explained in Appendix 4.1.

18

Appendix A: Training Procedure

A Data directory

After all data sets have been extracted in the data directory, the path to it is assigned to a variable. From this

variable the ".csv" �le-endings are removed. 420 data sets are drawn randomly to be trained. The data sets

are split into smaller groups of 20 among 8 training directories on the high performance computing (HPC)

server. Access to the server directory is gained through FileZilla. As show in �gure 8 directory contains the

appropriate settings.py �le, the six training*.py job arrays (one for each tuning-strategy) and an .sh �le for

the allocation of job resources through the Slurm Job Manager.

Figure 8: HPC Directory Structure

B Settings.py

The training �les only work with the variable data_sets. Therefore for each of the eight directories on the

HPC server, the local settings.py �le needs to be adjusted by deleting the last number. In the case below the

settings.py �le is prepared for the directory named settings1 and will train the 200th till the 220th data set.

This level of data fragmentation allows for a short 4,5 hour training time per 20 data sets. Parallelized over

8 instances of the job arrays, this adds up to 8*20=160 data sets in 4,5 hours. Abour 3*160=480 should be a

large enough sample for the project. The results of the project are currently evaluated at 200 samples.

#loaded data sets

data_sets_dir = os.listdir(path_to_data)

#remove ’.csv’ so can find common set below

data_sets_dir = [x[:-4] for x in data_sets_dir]

random.seed (10)

data_sets = random.sample(list(data_merged.Renamed), 420) #how many to train

len(set(data_sets_dir).intersection(set(data_sets)))

#test -run

19

#data_sets = (’high956 ’, ’high1072 ’)

#split data sets into smaller groups for job arrays

per_data_set = int(len(data_sets)/84) #420/84=5 data sets to train per job

#per_data_set = 5

data_sets = data_sets[per_data_set *40: per_data_set *44] #20 data sets

per job array

data_sets2 = data_sets[per_data_set *44: per_data_set *48]

data_sets3 = data_sets[per_data_set *48: per_data_set *52]

data_sets4 = data_sets[per_data_set *52: per_data_set *56]

data_sets5 = data_sets[per_data_set *56: per_data_set *60]

data_sets6 = data_sets[per_data_set *60: per_data_set *64]

data_sets7 = data_sets[per_data_set *64: per_data_set *68]

data_sets8 = data_sets[per_data_set *68: per_data_set *72]

C Job Arrays

Then the HPC server is accessed through PuTTy SSH and using the Slurm Workload Manager the following

command is given.

cd $WORK/Projekt/settings1

module switch env env /2015Q4-gcc -openmpi

dos2unix $WORK/Projekt/settings1/array.sh

sbatch $WORK/Projekt/settings1/array.sh

module switch env env /2021Q2-gcc -openmpi

This command sets the working directory to that particular directory, changes the module to an older 2015

module in order to convert the .sh �le from dos to unix, then run the batch using the converted �le in a new

2021 module with the latest version of python. This is a standard procedure when using the Slurm Workload

Manager. The .sh �le itself accessed through Notepad++ looks like

#!/ bin/bash

#SBATCH --job -name=training_array

#SBATCH --partition=std

#SBATCH --nodes=1

#SBATCH --time =04:30:00

#SBATCH --export=NONE

#SBATCH --mail -user=georgi.zhelev@studium.uni -hamburg.de

#SBATCH --mail -type=ALL

#SBATCH --array=1-6

#1. Basi

set -e

source /sw/batch/init.sh

#2. Module

module load python /3.8.5

module switch env env /2021Q2-gcc -openmpi

20

#3. Arbeit

cd $WORK/Projekt/settings1

#install packages on HPC -Server

#pip install doubleml

#pip install xgboost

#pip install seaborn

export OMP_NUM_THREADS =16

/usr/bin/time python3 $WORK/Projekt/settings1/training$SLURM_ARRAY_TASK_ID.py

exit

D Data Compilation

The training time is set to 4.5 hours with 1-6 job arrays with a single node of the standard partition made up

of 16 processors. This manages a processor utilization of about 100%. The most recent python module and

environment on which the anaconda packages are installed is loaded and the working directory is set to the

appropriate training directory. Finally the job arrays named training* are executed. Each .sh �le is executed

using the slurm commands above, but only the directory is changed from 1 to 8 in order to execute it for all

8 ∗ 20 data sets. After training is complete the post_compile module is executed using the slumrm command.

cd $WORK/Projekt

module switch env env /2015Q4-gcc -openmpi

dos2unix $WORK/Projekt/post_compile_job.sh

sbatch $WORK/Projekt/post_compile_job.sh

module switch env env /2021Q2-gcc -openmpi

This module uses the post_compile_job.sh �le. The module �ts the best learners, which for 200 data sets could

take up to 2-3 hours and compiles all the results in a single �le called results_table.csv. Then the analysis.py

�les can be used locally with the csv �le.

E Analysis Files

The analysis �les built graphics from the results. There are three of them:

• analysis3.py builds results per estimation method (such in ACIC 2019 Data Challenge)

• analysis4.py builds results per tuning strategy (Section 3)

• analysis5.py builds results of the bet learner (Section 3)

21

References

[1] Philipp Bach, Victor Chernozhukov, Malte S. Kurz, Martin Spindler: DoubleML - An Object-

Oriented Implementation of Double Machine Learning in R. Available at: https://arxiv.org/abs/

2103.09603.

[2] Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen,

Whitney Newey, James Robins: Double/debiased machine learning for treatment and structural pa-

rameters. The Econometrics Journal,21(1): C1-68, 2018. Available at: https://onlinelibrary.wiley.

com/doi/abs/10.1111/ectj.12097.

[3] Philipp Bach, Victor Chernozhukov, Malte S. Kurz, Martin Spindler: DoubleML - An Object-

Oriented Implementation of Double Machine Learning in R. Available at: https://arxiv.org/abs/

2103.09603.

[4] Gruber S., (2019): Atlantic Causal Inference Conference 2019 Data Challenge. Available at: https://

sites.google.com/view/acic2019datachallenge/home?authuser=0.

22

https://arxiv.org/abs/2103.09603
https://arxiv.org/abs/2103.09603
https://onlinelibrary.wiley.com/doi/abs/10.1111/ectj.12097
https://onlinelibrary.wiley.com/doi/abs/10.1111/ectj.12097
https://arxiv.org/abs/2103.09603
https://arxiv.org/abs/2103.09603
https://sites.google.com/view/acic2019datachallenge/home?authuser=0
https://sites.google.com/view/acic2019datachallenge/home?authuser=0

	Introduction
	Strategies for Parameter Tuning
	Data
	Model
	Method

	Estimation Procedure
	Data Loading
	Training
	Tuning-Grids
	Best Learner
	Parallelization
	HPC File Directory
	Compilation of Results
	Performance Metrics
	Composite rank scores

	Results
	Average Metrics over 16 DGP-ids
	Graphics of Scores and Averages
	Lasso
	Random Forest
	Extreme Gradient Boosting

	Results-Summary
	Best Learner Analysis

	Conclusion
	Results and Discussion

	Appendix A: Training Procedure
	Data directory
	Settings.py
	Job Arrays
	Data Compilation
	Analysis Files
	References

