Multi Label Chest X-Ray Classification

Georg Zhelev Paul Stryck Petrit Igrishtaj

Agenda

- Task
- Result
- Our Approach

1. Task

Classifying chest Xrays into 15 categories

14 diseases + "no finding"

Dataset: NIH Chest X-Ray dataset

112,120 X-ray images with disease labels from 30,805 unique patients

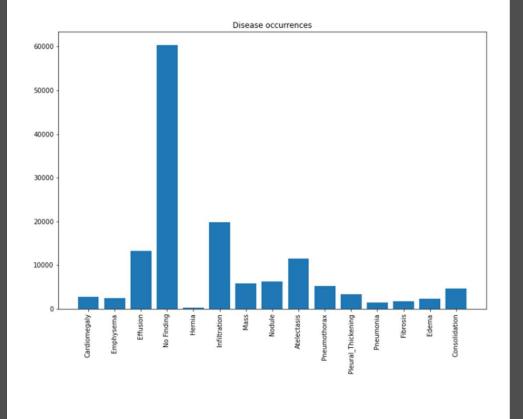
Labels algorithmically generated from patients' records

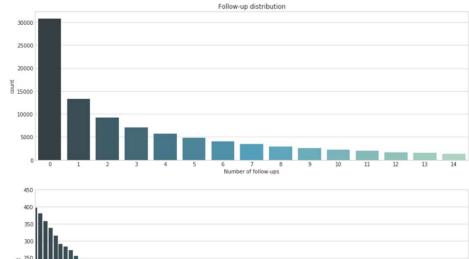
Class imbalances

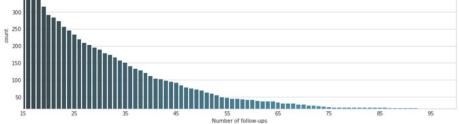
Correlation between diseases

How

Empirical evaluation of many neural network architectures







2. Final Products

- 1. Diagnosis Tool
- 2. Grad-CAM: Visual Explanations
- 3. Final Model
- 4. Final Model AUC Scores
- 5. Efficient Pipeline

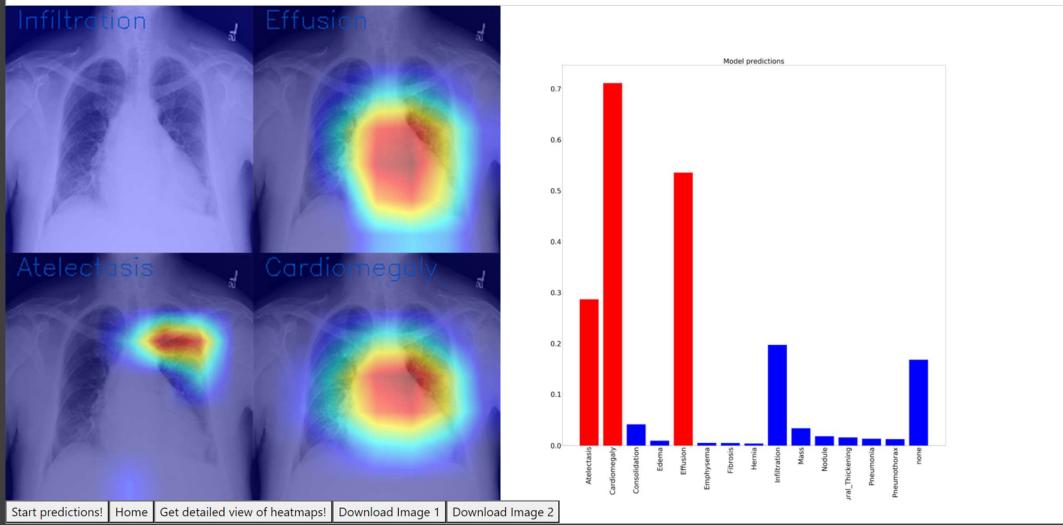
2.1 Diagnosis Tool

- Combines components from Flask and Dash
- A tool to dynamically upload and classify multiple chest X-rays
- Tool is able to show all results and provide visual explanations via heatmaps (based on Grad-CAM)
- Runtime
 - Normal prediction: 2-3 seconds/image
 - Detailed view: 5-6 seconds/image
- Code:

Select file(s) to upload							
File to upload png, jpg, jpeg							
Choose Files No file chosen							
Submit							

Heatmap_top4 0000001_002.png

Plot 0000001_002.png



2.2 Grad-CAM: Visual Explanation

- Deep Neural Networks are hard to interpret
- Highlights important regions of the input image for a specific classification result
- Let y be the final result (before softmax) and k the number of activation maps A
- Neuron importance weight of class c:

$$\alpha_k^c = \underbrace{\frac{1}{Z}\sum_{i}\sum_{j}}_{\text{gradients via backprop}} \underbrace{\frac{\partial y^c}{\partial A_{ij}^k}}_{\text{gradients via backprop}}$$

• Resulting coarse heatmap:

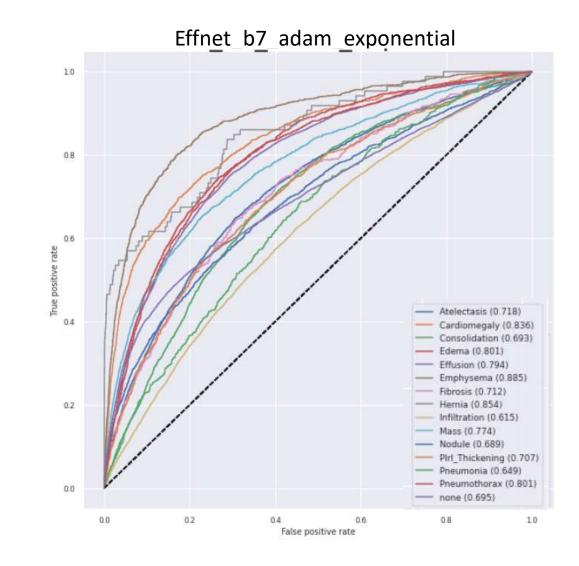
$$L_{\text{Grad-CAM}}^{c} = ReLU \underbrace{\left(\sum_{k} \alpha_{k}^{c} A^{k}\right)}_{\text{linear combination}}$$

https://arxiv.org/abs/1610.02391

2.3 Final Model

- Fine-tuned Effnet_b7 pretrained on ImageNet
 - Optimizer: Adam
 - Learning Rate: 0.0001
 - Learning Rate Scheduler
 - Exponential
 - Gamma: 0.5
 - Epochs: 8
 - Average AUC score of 0.75 on 14 disease categories (averaged over 5 folds)

2.4 Final Model AUC Scores



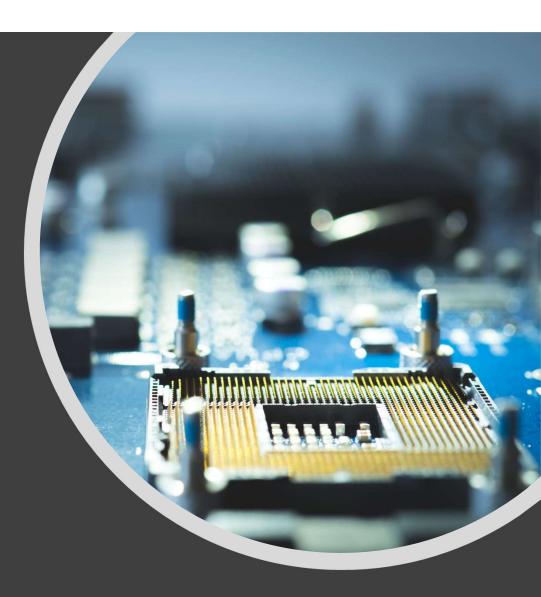
2.5 Efficient Pipeline

- Ability to change architecture and evaluate it seamlessly
- Allows training different neural networks
- Can be fine-tuned with a specific training regime
- Optimized it for speed
- Open sourced our code

 Code: <u>PaulStryck/nih-chest-x-ray</u> (github.com)

3. Our Approach

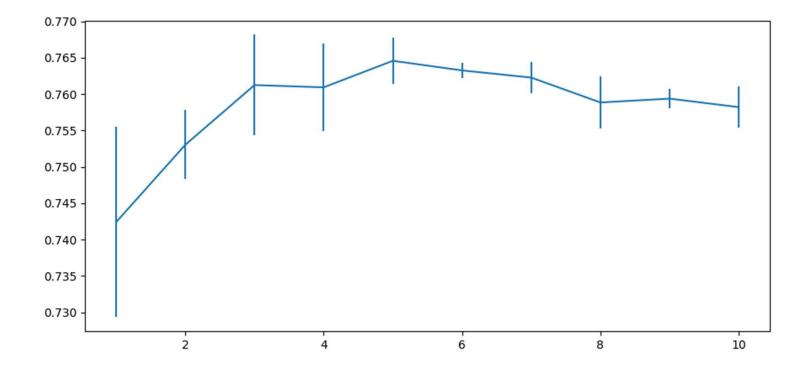
- 1. General Approach
- 2. Network Architectures
- 3. Learning Parameter Adjustments
- 4. 5-fold cross-validation to measure train/validation split impact
- 5. Data Augmentation to prevent early overfitting
- 6. Model Evaluation



3.1 General Approach

- Empirical evaluation of many different NNs and hyperparameters
- Select NN
- Specify hyperparameters
 - Optimizer
 - Scheduler
 - Initial learning rate
 - Loss function in final layer
 - Potentially training different layers each epoch
- 5-fold CV training
- Evaluate network on predefined metrics
 - AUC score of receiver operating curve
- Repeat

Example Output of Evaluation Script after Training Run



Average AUC score per epoch with std dev for 5 folds, for ResNet50 with Adam Optimizer and StepLR

Tuning

- Demand for a good Pipeline
 - Need a good pipeline where we can adjust these parameters independently and get results quickly
 - Implemented evaluation script to get comparable results
 - Highly optimised training infrastructure
 - Initial Keras implementation @ 0.2s/image
 - Final PyTorch implementation @ 0.002s/image
 - From 4:30h/epoch down to <5 min/epoch

3.2 Network Selection

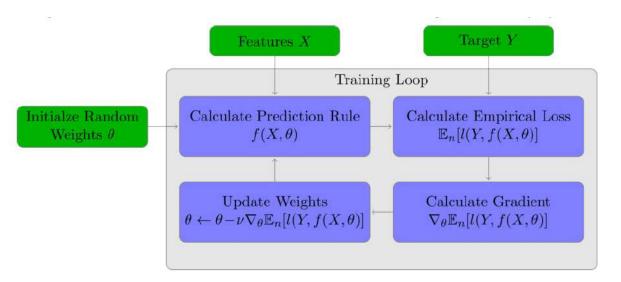
- Not enough data to train deep NN from scratch
 - Thus: Fine-tune an existing network
- Choose pre-trained network and adjust final classification layer to our needs
- Literature review
 - Select previously well performing network architectures on NIH dataset
 - Recently published networks, performing well on ImageNet

3.2 Network Selection

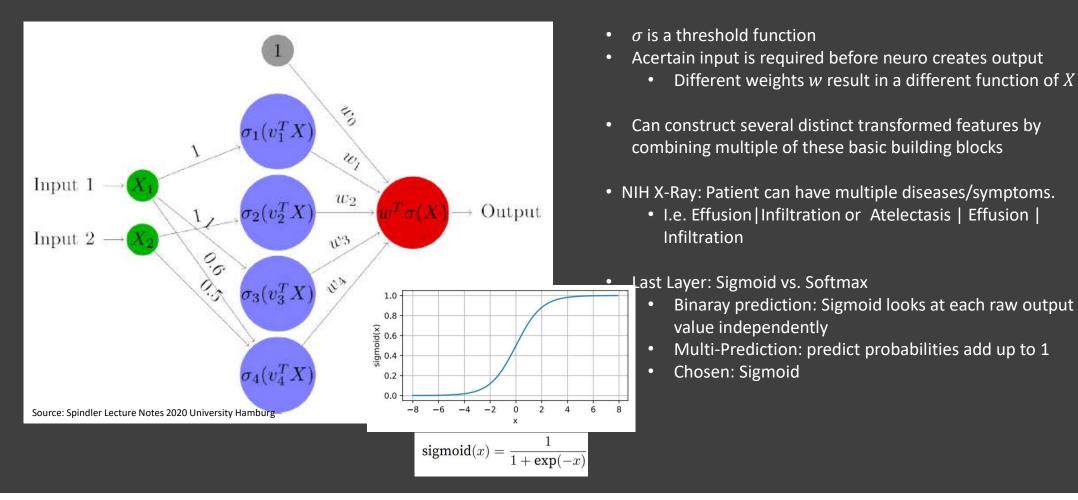
- Networks previously used successfully for NIH Chest X-Ray dataset
 - ResNet 50, 34, 18
 - DenseNet 161
- Recent top performing NNs on ImageNet
 - EfficientNet B0, B7
 - GoogleNet

3.3 Learning Parameter Adjustments

- 1. Activation Functions
- 2. Schedulers
- 3. Loss Functions
- 4. Optimizers



3.3.1 Activation Functions



3.3.2 Schedulers

- Assist optimizer when closing in on the minimum
- StepLR
 - Reduce LR by gamma after n epochs
- Exponential Decay
 - Reduce LR by gamma after each epoch
- Reduce on Plateau
 - Reduce LR by gamma after validation loss stagnates for n epochs

3.3.3 Loss Functions

- Varying loss functions in final classification layer
- Class imbalance issues may be mitigated by loss function
- Considered loss functions after literature review
 - Binary Cross Entropy
 - Weighted Cross Entropy
 - Hamming Loss
 - Focal Loss

Binary Cross Entropy Loss Function

$$egin{split} \mathcal{L}(heta) &= -rac{1}{n}\sum_{i=1}^n\sum_{j=1}^m y_{ij}\log(p_{ij}) \ &= -rac{1}{n}\sum_{i=1}^n\left[y_i\log(p_i) + (1-y_i)\log(1-p_i)
ight] \end{split}$$

- Want to approximate a function *f* 0
- Let $\mathcal X$ be the input space and $\mathcal Y$ be the target
- Learn a mapping $f_0: \mathcal{X} \to \mathcal{Y}$ $x \mapsto y$.
- How \mathcal{X}, \mathcal{Y} and $f0(\cdot)$ look like depends on the learning problem

 $f_0(x) := \mathbb{E}[Y|X = x].$

• Assume that f 0 is minimizing some average empirical loss l

 $f_0 := \arg\min_f \mathbb{E}[l(Y, f(X))].$

- Classification setting: binary classification problem with $\mathcal{Y} = \{0, 1\}$. Learn the conditional probability: f(x) = P(Y = 1|X = x),
- Minimize loss

$$-\log\left(\prod_{i=1}^{n} P(Y_i|X_i)\right) = \sum_{i=1}^{n} \underbrace{-Y_1 \log\left(f(X_i)\right) - (1 - Y_i) \log\left(1 - f(X_i)\right)}_{=l(Y_i, f(X_i))},$$

• Final predicted class motivated by Bayes Classifier

$$\arg\max_{k\in\{1,\dots,K\}}P(Y=k|X=x)$$

Risk Minimization with Gradient Descent

- A neural network is learning a parametrized function $f: \mathcal{X} \times \Theta \rightarrow \mathcal{Y}$ $(x, \theta) \mapsto y,$
- Where the f is a fixed function and $\theta \in$ is parameter vector
- Learn the parameter vector θ , which minimizes the risk (average loss)

$$\theta_0 := \arg\min_{\theta \in \Theta} \mathbb{E}[l(Y, f(X, \theta))].$$

- Since we do not know the distribution of (Y,X), we instead rely on the empirical measure to estimate θ : $\arg\min_{\theta\in\Theta} \frac{1}{n} \sum_{i=1}^{n} l(Y_i, f(X_i, \theta))$
- This has no analytic solution for most cases therefore rely on gradient descent to minimize loss
- Take gradient of the loss of a random sample $\nabla_{\theta} \mathbb{E}[l(Y, f(X, \theta))].$
- Gradient descent methods update the value of θ in the direction of the negative gradient

3.3.4 Optimizers

- Stochastic Gradient Descent
 - As the most common selection
- ADAM
 - For its good empirical results

Adam

- Stochastic gradient decent method based on estimations of the first and second moments of the gradients
- Combines the advantages of AdaGrad and RMSProp

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. g_t^2 indicates the elementwise square $g_t \odot g_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t.

Require: α : Stepsize **Require:** $\beta_1, \beta_2 \in [0, 1)$: Exponential decay rates for the moment estimates **Require:** $f(\theta)$: Stochastic objective function with parameters θ **Require:** θ_0 : Initial parameter vector $m_0 \leftarrow 0$ (Initialize 1st moment vector) $v_0 \leftarrow 0$ (Initialize 2nd moment vector) $t \leftarrow 0$ (Initialize timestep) while θ_t not converged do $t \leftarrow t + 1$ $g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1})$ (Get gradients w.r.t. stochastic objective at timestep t) $m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$ (Update biased first moment estimate) $v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2$ (Update biased second raw moment estimate) $\widehat{m}_t \leftarrow m_t/(1 - \beta_1^t)$ (Compute bias-corrected first moment estimate) $\hat{v}_t \leftarrow v_t/(1-\beta_2^t)$ (Compute bias-corrected second raw moment estimate) $\theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon)$ (Update parameters) end while **return** θ_t (Resulting parameters)

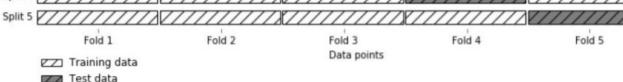
https://arxiv.org/pdf/1412.6980.pdf

3.45-Fold Cross-Validation

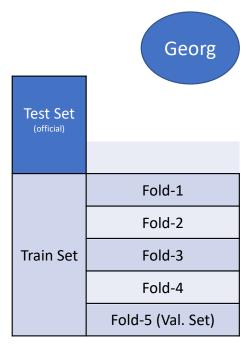
- Only small number of observations available
- Use k-fold cross-validation
 - Divide into 5 disjoint subsets of equal size
- Learn model 5 times
 - Alternate test set fold
- Average all 5 testing errors
- Group Split

CV iterations

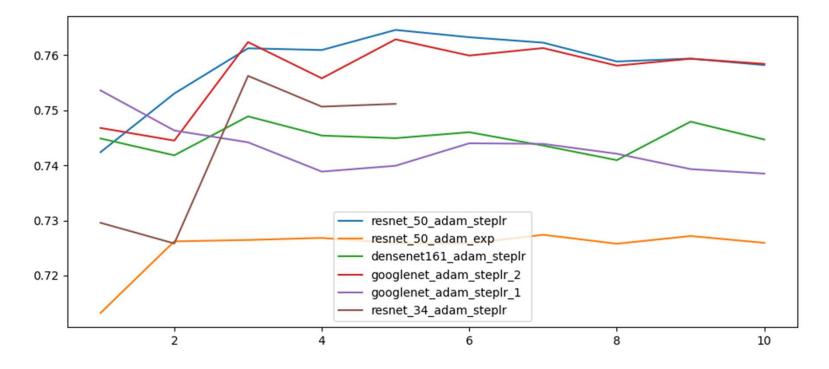
- Some patients more than one image
- Split so images of patient are in the came calit



Source: Mueller and Guido (2017)

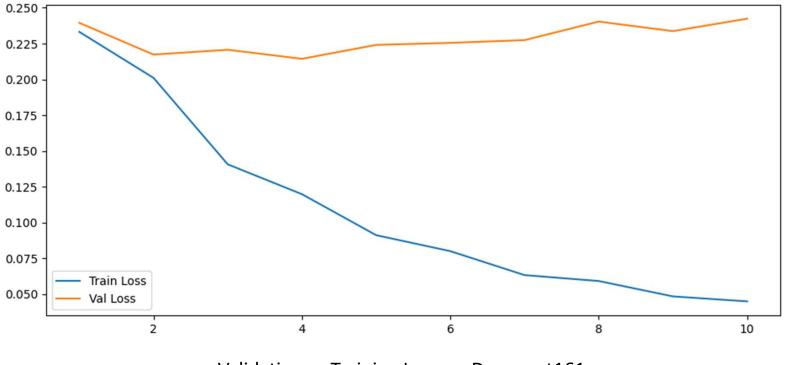


Evaluation Script after Multiple Training Runs



Average AUC score per epoch averaged over 5 folds

Evaluation Script after Individual Training Run



Validation vs Training Loss on Densenet161

3.5 Overfitting issues

- Data Augmentation
- Up/Down sampling

3.5.1 Data Augmentation

- Random changes to the training images producing similar, yet different, training examples
- Increases the size of the training dataset
- Used transformations:
 - Resizing
 - Random horizontal flips
 - Random rotations (-7 to 7 degrees)
- Horizontal flips and small rotations occur naturally in X-Rays
- Further augmentations would be purely artificial

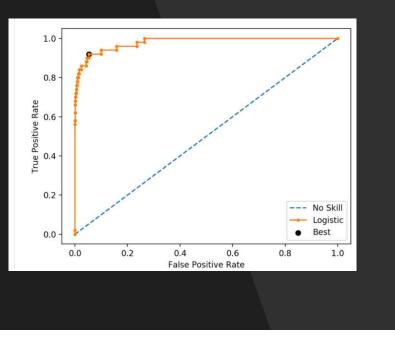
3.5.2 Up/Down Sampling

- High class imbalances lead to biased NN
- Artificially increase samples from infrequent categories
- Decrease samples from frequent categories
- Implemented via weighted random sampler in pytorch

3.6 Evaluation

- Different measurements taken
 - 1. Comparison table with variation
 - 2. Confusion Matrices
 - 3. AUC vs. Epoch
 - 4. ROC Curves

ROC Curves and Confusion Matrices



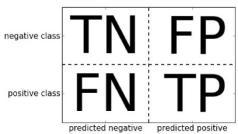
- Receiver Operating Characteristic (ROC)
 - Plot the TPR against the FPR

Sensitivity = $TPR = \frac{TP}{TP + FN}$ $FPR = \frac{FP}{TN + FP}$

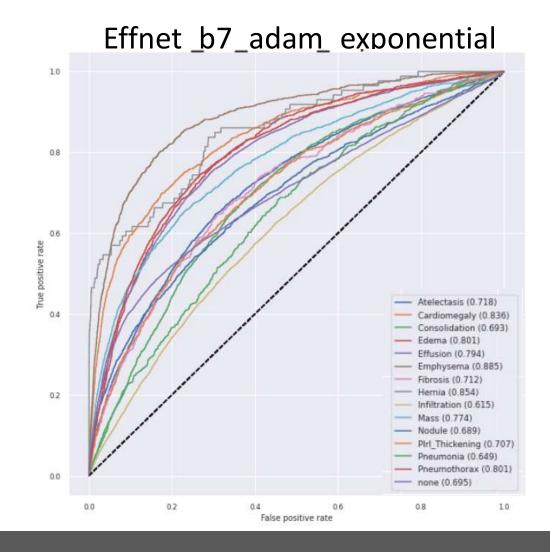
- Deals with skewed sample distributions
- Avoids overfitting to a single class: rare diseases
- Optimal threshold for ROC curve
 - Balances true positive and true negative rate similarly

 $J = rac{ ext{true positives}}{ ext{true positives} + ext{false negatives}} + rac{ ext{true negatives}}{ ext{true negatives} + ext{false positives}} - 1$

- Confusion Matrices
 - Bias towards FP preferable

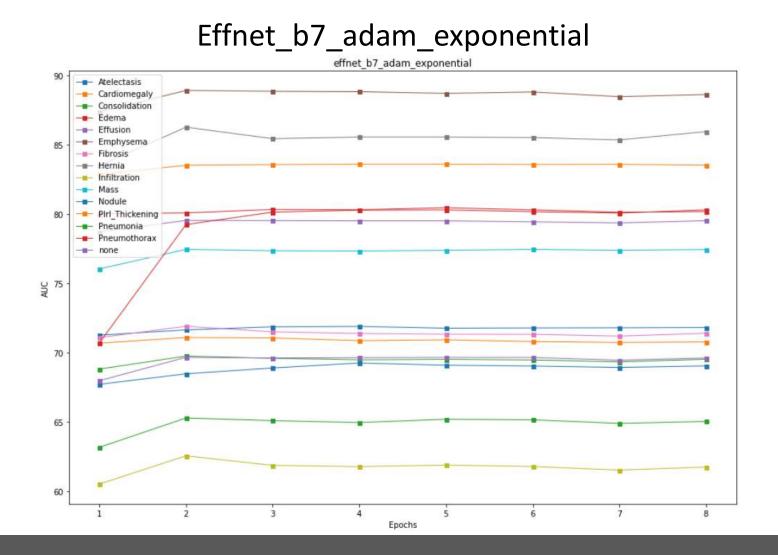


Effnet_b7_adam_exponential



Comparison Table of All Trained Networks

Pathology	effnet_b7_sgd _steplr	effnet_b7_ada m_stepir	resnet_50_ada m_exponential	resnet_50_ada m_stepIr	effnet_b0_ada m_steplr	googlenet_ada m_stepir_1	densenet161_a dam_stepir	effnet_b0_sgd _steplr	googlenet_ada m_stepir_2	resnet_34_ada m_stepir	effnet_b7_ada m_exponential
Atelectasis	67.9	62.7	68.8	71.0	68.7	71.1	67.5	70.7	71.6	70.6	71.6
Cardiomegaly	79.3	85.6	83.5	82.5	85.1	82.0	84.0	81.8	84.9	85.0	83.5
Consolidation	68.6	69.7	69.9	65.8	68.6	70.1	71.1	70.2	68.4	69.3	69.8
Edema	80.3	77.5	79.7	81.2	81.3	82.1	77.8	82.5	80.0	80.3	80.1
Effusion	76.0	79.2	79.5	77.5	77.7	79.2	79.8	77.3	79.8	79.5	79.6
Emphysema	80.6	81.4	78.8	87.2	85.2	82.0	83.2	82.6	83.7	82.1	88.9
Fibrosis	74.4	75.5	73.4	73.0	76.1	76.7	76.1	78.7	76.6	76.1	71.9
Hernia	83.3	84.4	85.0	84.0	84.6	82.8	86.8	86.9	82.2	89.5	86.3
Infiltration	61.5	62.1	59.8	62.1	62.2	62.6	66.2	60.7	62.6	61.5	62.6
Mass	67.6	65.1	70.0	74.2	71.2	72.4	72.0	71.1	74.9	74.9	77.5
Nodule	62.4	59.3	63.6	66.2	65.8	67.2	66.9	65.5	66.3	66.5	68.5
Pirl_Thickening	68.9	69.2	70.4	70.3	69.0	72.6	70.5	70.1	68.2	69.2	71.1
Pneumonia	59.6	59.2	59.2	63.6	62.2	61.4	61.0	62.4	64.4	62.4	65.3
Pneumothorax	79.5	77.3	77.5	81.4	81.9	80.1	79.1	82.3	81.1	78.6	79.2
none	68.0	70.0	70.0	68.5	69.7	69.6	70.1	69.4	69.4	70.9	69.7



Literature

- Baltruschat, M., Nickisch, H., Grass, M., Knopp, T. & Saalbach, A. (2019): *Comparison of Deep Learning Approaches for Multi-Label Chest X-Ray Classification.* Nature Scientific Reports
- 2. Müller, A. & Guido, S. (2016): *Introduction to Machine Learning with Python*. O'Reilly Media, Sebastopol, 1st edition.
- 3. Spindler, M. (2020), Lecutre 2: Baisics of Deep Learning [PDF]. *Deep Learning an Introduction*, University of Hamburg, delivered 11. November 2020.